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The localized induction equation(LIE) for the vortex filament is

St — Ss X SSS-

Here S(s,t) is a position vector (X,Y,Z) and suffices of s and t
mean the partial differentiation with respect to the arclength along
the filament and the time, respectively.

e LIE is derived by the Biot-Savart law with the localized induction
approximation and describes the swirl flow of vortex filament.

e LIE is integrable and has N soliton solution,

e LIE ia a member of the hierarchy,

e LIE is connected to the nonlinear Schrodinger equation,

A. Sym and Jan Cieslinski, and W.K. Schief and C. Rogers study
LIE from the geometrical point of view.



Definition of the local stretch

The local length di of the vortex filament at X = (X, Y, Z) parametrized
by s is given by

dl = /(dX)2 + (dv)2 + (d2)2

Express dl with s as

di(s) = \/(Xs)2 + (¥s)2 + (Zs)2 ds.
Then the local stretch [s is defined by

L = x)?+ 002 + (2

ls = 1 means a filament without stretch, s > 1 with stretch and
ls < 1 with shrink.

l3:



We consider the localized induction equation (LIE with stretch)

R, — R, X Rma.
Ry |3

R(r,t) is a position vector and r is a parameter along the filament.

If |R-| = 1, that is, no stretch, then LIE with stretch reduces to the

standard LIE.

Note that LIE with stretch is an integrable equation as well as LIE.



The inverse scattering method for LIE with stretch is given by

Yr = U,

Yy = Wap.
With a spectral parameter A\, U and W are given by
_3( 7 XT—in>
2\ Xr +1Yr —Zy ’
W = AWio + A\2Wh1,

where R = (X,Y, Z7) is the position vector. The compatibility con-
dition is given by

U =

U, — Wy + [U, W] = 0.



If we take W11 and Wyo as

e i ( Zy X, —iYy )
11 = — . :
2\/(XZ + Y2+ 2z \Ar i =
i
Wio =
2(X2 + Y2+ 22)2/3
XrYrr — YrXopy YrZyr — ZyYrr — i(Zrer — X?“er)
YyrZyyr — ZyrYyr ‘I‘ i(Zrer — X?“ZTT) —XrYrr + Yr Xor |

we obtain LIE with stretch. Then we see that LIE with stretch is
integrable. In fact we do not use the condition X2+4Y2+Z2 =1 so
that LIE with stretch includes solutions for stretched and/or shrunk
vortex filaments as well as unstretched ones.



et us consider relationship between LIE and LIE with stretch where
LIE is expressed as

St — SS X Sss,

and LIE with stretch as

Rr X Rrr
R, — .
t R,|3




We can proof that |Ss| and |R,| are independent of ¢t by taking the

inner product such as
oS 0 (0S
(5) =

ds Os \ ot
dR 0 [OR\
or or\ot)

with the equations of motion LIE and LIE with stretch. Then |S¢]
and |Ry| are a function of s and r, respectively.

Let us consider the transformation between two equations as

ds = g dr,
where g is a metric defined by
B \/8R OR
I = or Or
g is a function of r and also represents the local stretch. With the
metric we see that LIE is transformed into LIE with stretch.




Using the metric we have

s = f(r).

We can obtain a solution of LIE with stretch by substituting f(r)
into s of LIE such as

R(r,t) = S(f(r),t).

With N soliton solution of S, we can obtain N soliton solution of R.

Introducing the inverse function r = h(s) such as

f(h(s)) = s,

we see that LIE with stretch becomes LIE.



One vortex soliton solution of LIE with stretch is given by

AT ,
R, = sin2(Apf(r) —wpgt)sech2(Arf(r) — wyt),
42
AT
Ry = —)\% n )\% Cos2(Apf(r) —wpt)sech2(Arf(r) — wyt),
AT
Ry = f(r) — 2+ )\QtanhQ()\If(?“) —wrt),

R 1
where A = Ap +iA; and w = 2)2.



Stretched vortex soliton with a factor A as

A
Sy =A ! 5 Sin(2€2)sech(20),

2
AR T AT
AT
Sy =—A cos(2€2)sech(20),
Yy )\% _I_ )\% ( ) ( )
AT
AR T AT
where
Q = Aps — 2(\% — A, © = A\;s — AApA[t.
The local stretch is given by
2 =1+ 4T (A% — 1)[sech?(2©) AT sech*(20)]
SV EDY 2+ |

If A= 1, there is no stretch and if A %= 1, then local stretch for
A > 1 and local shrink for A < 1.



Time evolution of shrunk vortex soliton with LIE (left) and LIE
with stretch (right) att =0, 6 for A=0.6 and A =1.5+41.
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Local stretch of shrunk vortex soliton with LIE (left) and LIE with
stretch (right) att=0,6 for A=0.6 and A =1.5+1i.



Loop type of stretched vortex soliton
Sy = —Asin4tsech2s,
Sy = AcCos4tsechls,
S, = s —tanh2s,

which is exact solution of LIE, but is not solution of LIE with stretch.
Here A is a factor to represent stretch of the soliton. The local

stretch is given by

lf =1+ 4(A2 — 1)sech223 tanh?22s.
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Time evolution of shrunk loop soliton with LIE (left) and LIE with
stretch (right) at t =0, 6 for A = 0.5.
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Local stretch of shrunk loop soliton with LIE (left) and LIE with
stretch (right) at t =0, 6 for A = 0.5.



We can generalize the metric such as

ds = ¢g" dr,
then, we can obtain a generalized localized induction equation

R'r' X Rfr'r
R; = :
t IR,[3"

which is still an integrable equation.




According to the above results, we find a further generalization of
LIE by introducing the independent variable transformation as

s = f(r)
such that
_ df ()

dr

ds

dr = gdr.
If we assume that

R(r,t) = S(f(r),1),

then LIE reduces to
. R, x Ryy

R;
g3




Summary

1. We have shown the relationship between LIE and LIE with
stretch by using the metric g(r) and the inverse transformation r =

h(s).

2. We have obtained N vortex soliton solution of LIE with stretch
by using N soliton solution of LIE and shown explicitly one soliton
solution.

3. We have shown some numerical results by using LIE without
and with stretch.

4. Further generalizations of LIE have been found where the
integrability of the reduced equation is preserved.



References

1.

Kimiaki Konno and Hiroshi Kakuhata

lLLocalized Induction Equation for Stretched Vortex Filament
Symmetry, Integrability and Geometry: Methods and
Applications (SIGMA) 2, (2006), 32.

Kimiaki Konno and Hiroshi Kakuhata
Generalization of Localized Induction Equation
Journal of the Physical Society of Japan 76, (2006) 023001

Kimiaki Konno and Hiroshi Kakuhata

A New Type of Stretched Solutions Excited by Initially
Stretched Vortex Filaments for Local Induction Equation
Theor. Math. Phys., 136, (2005) 1181.

Kimiaki Konno and Hiroshi Kakuhata

A Hierarchy for Integrable Equations of Stretched

Vortex Filament

Journal of the Physical Society of Japan 74 (2005) 1427.



THE
PHYSICS OF FLUIDS

B ume 8, NuMBER 4

Arrie 1965

The locali
derived. Thi:

Ting of various eccentricitios.

II. LOCALIZED-INDUCTION CONCEPT

We are concerned with the induced velocity o the
vortex by itself. Then

e, ) = nls, ) — rils 6 8 @)

where £ is the running parameter along the vort-ex.‘

£ being small, 1;; may be expanded ina Taylor series:
) = ad b+ o @

in which

Latg=0. ©

a, = or, /0%, 8 = 3 30,/ .

Here the smoothness of the curve is assumed so that
the derivatives of the curve exist. Then

ar./ds; = Or,;/8k = a, + 2@k + - o°

and

—8r,;/0s; Xy
= (af +ag + - ) x(a +2aE + <)
= (@ xa) + (8 xa, + 22 %ad + o)
= (@ xaf + 0F)
= (@ xal) "

On the other hand,

= | + 8’ + -

= laf* e + 2acad o

o = lal lg] (1+a‘(]‘§15+ )

&l

Irul?

and

= Ll g (- s 2 )

Jas]

Localized-Induction Concept on a Curved Vortex
and Motion of an Elliptic Vortex Ring

R.J. Arms
National Bureau of Standards, Washington, D. C.
anp
Francis R. Hawa
Jet Propulsion Laboratory, California Institute of Technalogy, Pasadena, California
{Reveived 21 September 1964)

ed-induction concept for the induction effect of a smooth curved vortex on itself is
an spproximation applicable to the limiting case of a vortex filament of infinitesimal
core size and of negligible long-distance effect, anl was already successfully utilized in the investiga-
fions of the motion and deformation of a curved voriex filament given various initial configurations.
“Two theorems obtained under this concept are that the arc length of a vortex filament and the
projected area of a closed vortex filament are both invariant with respect to time. These theoretical
predictions are examined by a numerical analysis of the motion of an initially plane elliptic vortex

Therefore

_x [ axe 1
w-g a2zl +ow |

When the integration is made over the limits
€ < |¢| < 1, one obtains

_ X oa xa,
U= 5 e

1og (£) + o),

or

4rg, _ (91/0); x (/38" 1
2= T e 8 (E) + 0w,

If € < 1, ie., the limiting case of & vortex filamg
the term which is order unity may be neglect
which correspouds to an omission of long-d;
effects.

Under this approximation, which might
propriately be called the localized-induction coneg
the velocity induced on a curved vortex by
may be written, after pertinent definitions of
and length, as

b

at l@ar/as)f
Tt is noted that the induced velocity on a cung
vortex is indeed proportional to the local curv;
of the vortex and therefore that Hama's int
theorem® concerning the maxima of the sclf-ind{g
velocity i proved exact in this approximst

Paper by Arms and Hama
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Under this approximation, which might
propriately be called the localized-induction congz i
the velocity induced on a curved vortex b .
may be written, after pertinent definitions
and length, as

ar _ (3r/a8s) % (0°r/9s”)
ot |(ar/0s)]”

It is noted that the induced velocity on a ¢
vortex is indeed proportional to the local cu
of the vortex and therefore that Hama's int
theorem® concerning the maxima of the self-indu
velocity is proved exact in this approximaj




