J. Harnad

Centre de recherches mathématiques
Université de Montréal
Department of Mathematics and Statistics
Concordia University

Conference on Geometry, Integrability and Quantization,
Varna, June 3-9, 2011

(*Based on joint work with A. Yu. Orlov)
Outline

1: Review: KP and 2-Toda τ functions.
- KP τ functions
- Hilbert space Grassmannian and linear group actions
- The τ function as a determinant
- Examples of τ functions
 - Schur functions
 - Orthogonal polynomials
- Fermionic Fock space
- Schur function expansions

2: Convolution symmetries
- Representation on \mathcal{H}
- Fock space representation of convolution symmetries
- Effect of convolution symmetries on τ-functions
- Applications to matrix models
 - New matrix models as τ functions
- Convolution flows and the Q operator
- Triangular boundary operators $\hat{Q}(q), \hat{Q}(\tilde{q})$ of Toeplitz type
A KP tau function $\tau(t)$ is a function of an infinite set of flow variables $t = (t_1, t_2, \ldots)$, satisfying an infinite set of bilinear equations, the Hirota Bilinear equations:

$$\text{res}_{z=0} \left(\psi^+(z, t)\psi^-(z, t + s) \right) = 0,$$

(identically in $s := (s_1, s_2, \ldots)$), where the Baker-Akhiezer function $\psi^+(z, t)$ and its dual $\psi^-(z, t)$ are defined by the Sato formula:

$$\psi^\pm(z, t) := e^{\pm \sum_{i=1}^\infty t_iz^i} \times \frac{\tau(t \mp [z^{-1}])}{\tau(t)}$$

$$[z^{-1}] := \left(\frac{1}{z}, \frac{1}{2z^2}, \ldots \right)$$

Question: How to construct such τ functions? What do they mean?
Hilbert Space Grassmannians

Model for Hilbert space

\[\mathcal{H} := L^2(S^1) = \mathcal{H}_+ + \mathcal{H}_-, \]
\[\mathcal{H}_+ = \text{span}\{z^i\}_{i \in \mathbb{N}}, \quad \mathcal{H}_- = \text{span}\{z^{-i}\}_{i \in \mathbb{N}^+}, \]

The Sato-Segal-Wilson Grassmannian is defined as

\[\text{Gr}_{\mathcal{H}_+}(\mathcal{H}) = \{ \text{closed subspaces } w \subset \mathcal{H} \text{ “commensurable” with } \mathcal{H}_+ \} \]
i.e., such that orthogonal projection to \(\mathcal{H}_+ \) along \(\mathcal{H}_- \)

\[\pi_{\perp} : w \rightarrow \mathcal{H}_+ \]
is a Fredholm map and orthogonal projection to \(\mathcal{H}_- \)

\[\pi_{\perp} : w \rightarrow \mathcal{H}_- \]
is “small” (e.g., Hilbert-Schmidt). \((\mathcal{H}_+ \in \text{Gr}_{\mathcal{H}_+}(\mathcal{H}) \text{ is the “origin”}).\)
Basis labelling and frames

Orthonormal basis for \mathcal{H}:

$$\{ e_i := z^{-i-1} \}_{i \in \mathbb{Z}},$$

In terms of frames, let

$$w = \text{span}\{ w_1, w_2, \ldots \},$$

and expand the basis vectors w_i in the orthonormal basis $\{ e_j \}$

$$w_i := \sum_{j \in \mathbb{Z}} W_{ji} e_j.$$

Define doubly ∞ column vectors $\{ W_i \}_{i=1,2\ldots}$ with components

$$(W_i)_j := W_{ji}$$

and the rectangular $2\infty \times \infty$ matrix W with columns $\{ W_i \}_{i=1,2\ldots}$

$$W := (W_1, W_2, \cdots)$$
Abelian group actions: \(\Gamma_\pm \times \mathcal{H} \rightarrow \mathcal{H} \):

\(\Gamma_\pm := \{ \gamma_\pm(t) := e^{\sum_{i=1}^{\infty} tiz^{\pm i}} \} \)

\((\gamma_\pm(t), f \in L^2(S^1)) \mapsto \gamma_\pm(t)f\)

This induces an action on frames \(W \), for \(w \in Gr_{\mathcal{H}_+}(\mathcal{H}) \)

\(\gamma_\pm(t) \times W \mapsto W(t) := e^{\sum_{i=1}^{\infty} t_i \Lambda^{\pm i}} W \)

where

\(\Lambda(e_i) = e_{i-1} \)

More generally, we have the **general linear group action**:

\(GL(\mathcal{H}) \times Gr_{\mathcal{H}_+}(\mathcal{H}) \rightarrow Gr_{\mathcal{H}_+}(\mathcal{H}) \)

\((g \in GL(\mathcal{H}), W) \mapsto gW\)

represented by doubly infinite, invertible matrices

\(g = e^A, \quad A \in gl(\infty). \quad A = (A_{ij})|_{i,j, \in \mathbb{Z}} \)
For $w \in Gr_{\mathcal{H}^+}(\mathcal{H})$, the KP τ function $\tau_w(t)$ is obtained as the Fredholm determinant of the orthogonal projection of $W(t)$ to \mathcal{H}^+:

$$\tau_w(t) = \det(\pi^\perp : W(t) \to \mathcal{H}^+), \quad t = (t_1, t_2, \ldots)$$

or, equivalently if

$$W(t) = \begin{pmatrix} W_+(t) \\ W_-(t) \end{pmatrix}$$

then

$$\tau_w(t) = \det W_+(t).$$
Example: 1. Schur functions ("elementary building blocks")

Consider **Partitions**:

$$\lambda = (\lambda_1, \ldots, \lambda_{\ell(\lambda)}), \quad \lambda_1 \geq \cdots \geq \lambda_{\ell(\lambda)}, \quad \lambda_i \in \mathbb{N}^+$$

of length $\ell(\lambda)$ and weight $|\lambda| := \sum_{i=1}^{\ell(\lambda)} \lambda_i$

Define $w_\lambda \in Gr_{H_+}(\mathcal{H})$ as

$$w_\lambda := \text{span}\{e_{\lambda_i-i}\}$$

Then

$$\tau_{w_\lambda}(t) = s_\lambda(t)$$

where the **Schur function**

$$s_\lambda(t) := \text{tr}(\rho_\lambda(g)), \quad g \in GL(N)$$

$$t := (t_1, t_2, \cdots), \quad t_i := \frac{1}{i} \text{tr}(g^i), \quad g \in GL(N)$$

is the **character** of the irreducible representation

$$\rho_\lambda : GL(N) \longrightarrow \text{End}(T^{(\lambda)} \subset (\mathbb{C}^N)^{\otimes |\lambda|})$$

obtained by restricting to tensors of symmetry type λ.
Example: 2. Orthogonal polynomials and Random Matrix integrals

Let

\[w_{d\mu} = \text{span}\left\{ \frac{1}{z^N} p_{N+i} \right\}_{i=0,1,2,...} \in \text{Gr}_{\mathcal{H}+}(\mathcal{H}) \]

where \(\{p_i(z)\}_{i \in \mathbb{N}} \) are orthogonal polynomials with respect to a measure \(d\mu(z) \) on some set of curve segments \(\Gamma \) in the complex plane (e.g., the real line \(\mathbb{R} \))

\[\int p_i(z)p_j(z)d\mu(z) = \delta_{ij} \]

Then

\[\tau_{w_{d\mu}}(t) = \prod_{a=1}^{N} \int_{\Gamma} d\mu(z_a)e^{\sum_{i=1}^{\infty} t_i z_i^a} \Delta^2(z) \]

where \(\Delta(z) = \prod_{a<b}^{N}(z_a - z_b) \) (Vandermonde determinant)
Random matrix integrals

By the **Weyl integral formula** on $U(N)$, we have

$$
\tau_{Wd\mu}(t) \propto Z_{N,f}(t) := \int_{H_{N\times N}} d\mu_{N,f}(M, t)
$$

where

$$
d\mu_{N}(M, t) := d\mu_{N}(M) e^{\text{tr}(\sum_{i=1}^{\infty} t_i M_i)}
$$

is a deformation family of $U(N)$ conjugation invariant measures on the space $H_{N\times N}$ of Hermitian $N \times N$ matrices.

$$
d\mu_{N}(UMU^\dagger) = d\mu_{N}(M), \quad \forall U \in U(N), \quad M \in H_{N\times N}
$$
Fermionic Fock space \mathcal{F}

For every partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ and integer $N \in \mathbb{Z}$ define the extended semi-infinite sequence

$$\lambda = (\lambda_1, \ldots \lambda_{\ell(\lambda)}, 0, 0, \ldots)$$

and "particle positions"

$$l_j := \lambda_j - j + N$$

The **fermionic Fock space** \mathcal{F} is the **exterior space** (orthogonal direct sum of charge N subspaces)

$$\mathcal{F} := \wedge \mathcal{H} = \bigoplus_{N \in \mathbb{Z}} \mathcal{F}_N.$$

spanned by semi-infinite wedge products (orthonormal basis for \mathcal{F}_N)

$$|\lambda, N\rangle := e_{l_1} \wedge e_{l_2} \wedge \cdots$$

Each charge N sector \mathcal{F}_N has a charged **vacuum vector**

$$|0, N\rangle = e_{N-1} \wedge e_{N-2} \wedge \cdots,$$
Fermionic creation and annihilation operators

In terms of the **Orthonormal basis for** \mathcal{H}, and **dual basis for** \mathcal{H}^*

$$\{ e_i := z^{-i-1} \}_{i \in \mathbb{Z}}, \quad \{ \tilde{e}_i \}_{i \in \mathbb{Z}}, \quad \tilde{e}_i(e_j) = \delta_{ij}$$

define the Fermi **creation and annihilation operators** (exterior and interior multiplication):

$$\psi_i v := e_i \wedge v, \quad \psi_i^\dagger v := i\tilde{e}_i v, \quad v \in \mathcal{H}.$$

These satisfy the usual anti-commutation relations

$$[\psi_i, \psi_j]_+ = [\psi_i^\dagger, \psi_j^\dagger]_+ = 0, \quad [\psi_i, \psi_j^\dagger]_+ = \delta_{ij}.$$

determining the ∞ dimensional Clifford algebra of fermionic operators.
Plücker map and Plücker coordinates

The **Plücker map** $\mathcal{P} : \text{Gr}_{\mathcal{H}^+}(\mathcal{H}) \to \mathbb{P}(\mathcal{F})$ into the projectivization of \mathcal{F},

$$\mathcal{P} : \text{span}(w_1, w_2, \ldots) \mapsto [w_1 \wedge w_2 \wedge \cdots],$$

embeds $\text{Gr}_{\mathcal{H}^+}(\mathcal{H})$ in $\mathbb{P}(\mathcal{F})$ as the intersection of an infinite number of quadrics. If orthogonal projection to \mathcal{H}^+

$$\pi^\perp : w \to \mathcal{H}^+$$

has Fredholm index N, is in the charge N sector $\mathcal{P}(w) \subset \mathcal{F}_N$. Expanding in the standard orthonormal basis,

$$\mathcal{P}(w) = w_1 \wedge w_2 \wedge \cdots = \sum_{\lambda} \pi_{\lambda}(w, N) |\lambda, N >,$$

the coefficients $\pi_{\lambda}(w, N)$ are the **Plücker coordinates** of w (which satisfy the infinite set of bilinear Plücker equations.)
Fermionic representation of group actions and flows

The **Plücker map**

\[\mathcal{P} : \text{Gr}_{\mathcal{H}^+}(\mathcal{H}) \to \mathbb{P}(\mathcal{F}) \]

interlaces the action of the abelian groups

\[\Gamma_{\pm} \times \text{Gr}_{\mathcal{H}^+}(\mathcal{H}) \to \text{Gr}_{\mathcal{H}^+}(\mathcal{H}) \]

with the following representations on \(\mathcal{F} \) (and its projectivization)

\[\gamma_{\pm}(t) : v \mapsto \hat{\gamma}_{\pm}(t)v, \quad \hat{\gamma}_{\pm}(t) := e^{\sum_{i=1}^{\infty} t_i J_{i,\pm}}, \quad v \in \mathcal{F} \]

where

\[J_i := \sum_{n \in \mathbb{Z}} \psi_n \psi_{n+i}^\dagger, \quad i \in \mathbb{Z} \]

More generally, if \(g = e^A \in GL(\mathcal{H}), A \in \mathfrak{gl}(\mathcal{H}) \) has the fermionic representation

\[\hat{g} := e^{\sum_{i,j \in \mathbb{Z}} A_{ij} : \psi_i \psi_j^\dagger} : \]
Fermionic representation of KP-chain and 2-Toda τ function

For $w \in \text{Gr}_{\mathcal{H}_+}(\mathcal{H}) = g(\mathcal{H}_+)$, $g \in GL(\mathcal{H})$, with $\mathcal{P}(w) \subset \mathcal{F}_N$ in the charge-N sector, the KP chain τ-function has the fermionic representation:

$$\tau_w(t, N) = \langle N | \hat{\gamma}_+(t) \hat{g} | N \rangle =: \tau_g(t, N)$$

Similarly, for the 2-Toda τ function:

$$\tau_w^{(2)}(t, \tilde{t}, N) = \langle N | \hat{\gamma}_+(t) \hat{g} \hat{\gamma}_-(\tilde{t}) | N \rangle := \tau_g^{(2)}(t, \tilde{t}, N)$$
Review: KP and 2-Toda \(\tau \) functions. Fermionic Fock space

Schur function expansions

It follows that we have the **Schur function expansions**

\[
\tau_g(t, N) = \sum_\lambda \pi_\lambda(g(H_+), N)s_\lambda(t),
\]

\[
\tau_g^{(2)}(t, \tilde{t}, N) = \sum_\lambda \sum_\mu B_{\lambda, \mu}(g, N)s_\lambda(t)s_\mu(\tilde{t}).
\]

where

\[
\pi_\lambda(g(H_+), N) = \langle \lambda, N| \hat{g} | N \rangle
\]

\[
B_{\lambda, \mu}(g, N) = \langle \lambda, N| \hat{g} | \mu, N \rangle
\]

are the Plücker coordinates along the basis direction \(|\lambda, N \rangle \).
2. Convolution symmetries

Given an infinite sequence of complex numbers $T = \{ T_i \}_{i \in \mathbb{Z}}$, define

$$
\rho_i := e^{T_i}, \quad r_i := e^{T_{i-1}} - T_{i-1}, \quad i \in \mathbb{Z}.
$$

Assume the series $\sum_{i=1}^{\infty} T_{-i}$ converges and

$$
\lim_{i \to \infty} |r_i| = r \leq 1,
$$

The two series

$$
\rho_+ (z) = \sum_{i=0}^{\infty} \rho_{-i-1} z^i, \quad \rho_- (z) = \sum_{i=1}^{\infty} \rho_{i-1} z^{-i},
$$

then define analytic functions $\rho_\pm (z)$ in these regions and

$$
R_{\rho} := \prod_{i=1}^{\infty} \rho_{-i} < \infty
$$
Convolution symmetries (cont’d)

If $w \in L^2(S^1)$ has the Fourier series decomposition

$$w(z) = \sum_{i=-\infty}^{\infty} w_i z^{-i-1} = w_-(z) + w_+(z)$$

$$w_-(z) = \sum_{i=1}^{\infty} w_{i+1} z^{-i}, \quad w_+(z) = \sum_{i=0}^{\infty} w_{-i-1} z^i$$

Define the bounded linear map $C(T) : L^2(S^1) \to L^2(S^1)$

$$C(T)(w)(z) = \sum_{i=-\infty}^{\infty} \rho_i w_i z^{-i-1} = \sum_{i=-\infty}^{\infty} \rho_i w_i e_i.$$

so each basis element e_i is multiplied by e^{T_i}.

The group of **Convolution Symmetries** $C(T) : \mathcal{H} \to \mathcal{H}$ is represented in the standard monomial basis $\{e_i\}$ by the diagonal matrix

$$C(T) := \text{diag}\{e^{T_i}\}.$$
Fock space representation

This abelian subalgebra of $\mathfrak{gl}(\mathcal{H})$ is generated by the operators

$$K_i := :\psi_i\psi_i^\dagger: = \begin{cases} \psi_i\psi_i^\dagger & \text{if } i \geq 0 \\ -\psi_i^\dagger\psi_i & \text{if } i < 0, \end{cases}$$

$$[K_i, K_j] = 0, \quad i, j \in \mathbb{Z}.$$

Define

$$\hat{C}(T) := e^{\sum_{i=-\infty}^{\infty} T_i K_i}.$$

Then $\hat{C}(T)$ is diagonal in the basis $\{\vert \lambda, N \rangle \}$,

$$\hat{C}(T)\vert \lambda, N \rangle = r_{\lambda}(N, T)\vert \lambda, N \rangle.$$

with eigenvalues:

$$r_{\lambda}(N, T) := r_0(N, T) \prod_{(i,j) \in \lambda} r_{N-i+j},$$

$$r_0(N, T) := \begin{cases} e^{\sum_{i=0}^{N-1} T_i} & \text{if } N > 0 \\ 1 & \text{if } N = 0 \\ e^{-\sum_{i=1}^{-N} T_{-i}} & \text{if } N < 0, \end{cases}$$
Lemma

Convolution actions multiply the coefficients in the Schur function expansions of $\tau_{C_\rho g}(N, t)$ and $\tau^{(2)}_{C_\rho \hat{g}C_{\tilde{\rho}}}(N, t, \tilde{t})$ by the diagonal factors $r_\lambda(N, T)$ and $r_\mu(N, \tilde{T})$.

$$\tau_{C_\rho g}(N, t) = \sum_\lambda r_\lambda(N, T)\pi_\lambda(g(H_+), N)s_\lambda(t),$$

$$\tau^{(2)}_{C_\rho gC_{\tilde{\rho}}}(N, t, \tilde{t}) = \sum_\lambda \sum_\mu r_\lambda(N, T)B_{\lambda, \mu}(g, N)r_\mu(N, \tilde{T})s_\lambda(t)s_\mu(\tilde{t}).$$

The Plücker coordinates for the modified Grassmannian elements $C_\rho g(H_+^N)$ and $C_\rho gC_{\tilde{\rho}}(w_\mu, N)$ are thus:

$$\pi_\lambda(C_\rho g(H_+), N) = r_\lambda(N, T)\pi_{N, g}(\lambda)$$

$$B_{\lambda, \mu}(C_\rho gC_{\tilde{\rho}}, N) = r_\lambda(N, T)B_{\lambda, \mu}(g, N))r_\mu(N, \tilde{T}).$$
1. New matrix models as τ functions. Example 1.

Example

$$
\rho_-(z) = \frac{1}{z} e^{\frac{1}{z}} = \sum_{i=0}^{\infty} \frac{z^{-i-1}}{i!}, \quad |z| \leq 1
$$

$$
\rho_+(z) = \frac{1}{1 - z} = \sum_{i=1}^{\infty} z^i \quad |z| > 1,
$$

$$
\rho_i = \begin{cases}
\frac{1}{i!} & \text{if } i \geq 0 \\
1 & \text{if } i \leq -1,
\end{cases}
$$

$$
r_i = \begin{cases}
\frac{1}{i} & \text{if } i \geq 1 \\
1 & \text{if } i \leq 0,
\end{cases}
$$

$$
r_\lambda(N) = \frac{1}{(\prod_{i=1}^{N-1} i!)(N)_{\lambda}} \quad \text{if } \ell(\lambda) \leq N
$$
New matrix models from old

Hermitian matrix integrals of the form

\[Z_N(t) = \int_{M \in H^{N \times N}} d\mu(M) e^{tr \sum_{i=1}^{\infty} t_i M^i} \]

\[= \prod_{a=1}^{N} \int_{\mathbb{R}} d\mu_0(x_a) e^{\sum_{i=1}^{\infty} t_i x_a^i} \Delta^2(X), \]

are KP-Toda \(\tau \)-functions. The Schur function expansion is

\[Z_N(t) = \sum_{\ell(\lambda) \leq N} \pi_{N,d\mu}(\lambda) s_\lambda(t) \]

\[\pi_{N,d\mu}(\lambda) = \prod_{a=1}^{N} \left(\int_{\mathbb{R}} d\mu_0(x_a) \right) \Delta^2(X) s_\lambda([X]) \]

\[= (-1)^{1/2} N(N-1) N! \det(\mathcal{M}_{\lambda_i-i+j+N-1}) |_{1 \leq i,j \leq N} \]

\[\mathcal{M}_{ij} := \int_{\mathbb{R}} d\mu_0(x) x^{i+j} \]
Now consider the **externally coupled** matrix model integral

\[
Z_{N,\text{ext}}(A) := \int_{M \in \mathbb{H}^{N \times N}} d\mu(M) e^{\text{tr}(AM)},
\]

where \(A \in \mathbb{H}^{N \times N}\) is a fixed \(N \times N\) Hermitian matrix. Applying the convolution symmetry of Example 1:

Theorem

Applying the convolution symmetry \(\tilde{C}_\rho\) to the \(\tau\)-function \(Z_N(t)\), where \(\rho_+(z)\) and \(\rho_-(z)\) are defined as in Example 1, and choosing the KP flow parameters as \(t = [A]\) gives, within a multiplicative constant, the externally coupled matrix integral

\[
\tilde{C}_\rho(Z_N)([A]) = \left(\prod_{i=1}^{N-1} i! \right)^{-1} Z_{N,\text{ext}}(A).
\]
Externally coupled two-matrix model integral

Itzykson-Zuber exponential coupled 2-matrix model

$$Z_N^{(2)}(t, \tilde{t}) = \int_{M_1 \in H^{N \times N}} d\mu(M_1) \int_{M_1 \in H^{N \times N}} d\tilde{\mu}(M_2) \ e^{\text{tr} \left(\sum_{i=1}^{\infty} \left(t_i M_1 + \tilde{t}_i M_2 + M_1 M_2 \right) \right)}$$

$$\propto \prod_{a=1}^{N} \left(\int_{\mathbb{R}} d\mu_0(x_a) \int_{\mathbb{R}} d\tilde{\mu}_0(y_a) \ e^{\sum_{i=1}^{\infty} (t_i x_a + \tilde{t}_i y_a + x_a y_a)} \right) \Delta(X) \Delta(Y)$$

Theorem

Applying the convolution symmetry $\tilde{C}_{\rho, \tilde{\rho}}$ to $Z_N^{(2)}$ and evaluating at the parameter values $t = [A], \tilde{t} = [B]$ gives the externally coupled matrix integral

$$\tilde{C}_{\rho, \tilde{\rho}}^{(2)}(Z_N^{(2)}([A], [B])) = Z_N^{(2), \rho, \tilde{\rho}}(A, B)$$
Convolution flows and the Q operator

The Q-operator

Choose an infinite sequence of constants \(\{q_j\}_{j \in \mathbb{Z}} \) with

\[|q_j| > 1 \quad \text{for} \quad j > 0 \]

and define the infinite square matrix \(Q(q) \in \text{Mat}^{\mathbb{Z} \times \mathbb{Z}} \) having matrix elements

\[Q_{ij} = (q_j)^i \]

\[\Lambda Q = Q \; \text{diag}(q_i) \]

\[\gamma_+(t)Q = Q \; C(T(q, t)) \]

\[T_j(q, t) := \sum_{i=1}^{\infty} t_i(q_j)^i \]
The Q-operator (cont’d)

For suitably chosen values of (q, \tilde{q}) (see examples below), it is possible to make triangular decompositions

$$Q(q) = Q_-(q)Q_0(q)Q_+(q),$$

where Q_0, is of the form

$$Q_0(q) = \text{diag}(e^{\phi_j(q)}),$$

for a suitably defined infinite sequence

$$\phi(q) = \{\phi_j(q)\}, \quad j \in \mathbb{Z},$$

and $Q_\pm(q)$, $Q_\pm(\tilde{q})$ are invertible triangular matrices of the form

$$Q_\pm(q) = e^{A_\pm(q)}, \quad Q_\pm(\tilde{q}) = e^{A_\pm(\tilde{q})},$$

where $A^-(q)$ and $A^-(\tilde{q})$, $A^+(q)$, $A^+(\tilde{q})$ are, respectively, strictly lower ($-$) and strictly upper ($+$) triangular doubly infinite matrices.
Fermionic representation of the Q-operator

Introduce the fermionic vertex operators

\[
\hat{Q}_+(q) := e^{\sum_{i<j}^\infty A_{ij}^+(q)\psi_i\psi_j}, \quad \hat{Q}_-(q) := e^{\sum_{i>j}^\infty A_{ij}^-(q)\psi_i\psi_j}, \\
\hat{Q}_+(\tilde{q}) := e^{\sum_{i<j}^\infty A_{ij}^{-\dagger}(\tilde{q})\psi_i\psi_j}, \quad \hat{Q}_-(\tilde{q}) := e^{\sum_{i>j}^\infty A_{ij}^{\dagger}(\tilde{q})\psi_i\psi_j}, \\
\hat{C}(\phi(q)) := e^{\sum_{i\in\mathbb{Z}}^\infty \phi_i(q)K_i}, \quad \hat{C}(\phi(\tilde{q})) := e^{\sum_{i\in\mathbb{Z}}^\infty \phi_i(\tilde{q})K_i}.
\]

By the equivariance of the Plücker map, we then have

\[
\hat{\gamma}_+(t)\hat{Q}_-(q)\hat{C}(\phi(q))\hat{Q}_+(q) = \hat{Q}_-(q)\hat{C}(\phi(q))\hat{Q}_+(q)\hat{C}(T), \\
\hat{Q}_-(\tilde{q})\hat{C}(\phi(\tilde{q}))\hat{Q}_+(\tilde{q})\hat{\gamma}_-(\tilde{t}) = \hat{C}(\tilde{T})\hat{Q}_-(\tilde{q})\hat{C}(\phi(\tilde{q}))\hat{Q}_+(\tilde{q}).
\]
Convolution flows and τ functions

Introduce a new basis for the abelian algebra of convolution flow generators as follows:

$$K_j(q) := \sum_{i=-\infty}^{\infty} (q_i)^j K_i,$$

and define, correspondingly

$$\hat{C}_q(t) := e^{\sum_{i=1}^{\infty} t_i K_i(q)} = \hat{C}(T(q, t)),$$
$$\hat{C}_{\tilde{q}}(\tilde{t}) := e^{\sum_{i=1}^{\infty} \tilde{t}_i K_i(\tilde{q})} = \hat{C}(T(\tilde{q}, \tilde{t})).$$
The fermionic representation of the tau function may be expressed in terms of the corresponding Convolution Symmetry flows as: follows

\[\tau_g(q)(N,t) = r_0(N, \phi(q)) \langle N| \hat{Q}_+(q) \hat{C}_q(t) \hat{g} |N \rangle \]
\[\tau^{(2)}_g(q,\tilde{q})(N,t,\tilde{t}) = r_0(N, \phi(q) + \phi(\tilde{q})) \langle N| \hat{Q}_+(q) \hat{C}_q(t) \hat{g} \hat{C}_\tilde{q}(\tilde{t}) \hat{Q}_-(\tilde{q}) |N \rangle, \]

where

\[\hat{g}(q) := \hat{Q}_-(q) \hat{C}(\phi(q)) \hat{Q}_+(q) \hat{g} \]
\[\hat{g}(q,\tilde{q}) := \hat{Q}_-(q) \hat{C}(\phi(q)) \hat{Q}_+(q) \hat{g} \hat{Q}_-(\tilde{q}) \hat{C}(\phi(\tilde{q})) \hat{Q}_+(\tilde{q}). \]
Triangular boundary operators $\hat{Q}(q), \hat{Q}(\bar{q})$ of Toeplitz type

Example

Let

$$q_j = e^{i\alpha q^{-j}}, \quad j \in \mathbb{Z}$$

where

$$q = e^{2\pi i \tau}, \quad \Im(\tau) > 0$$

and $\alpha = \alpha(q)$ is a real valued function of q. Then

$$Q(q)_{mn} = e^{im\alpha q^{-m-n}} = e^{im\alpha q^{-\frac{1}{2}m^2} q^{\frac{1}{2}(m-n)^2} e^{-\frac{1}{2}n^2}}$$

$$Q(q) = Q_0(q) \left(\sum_{m=-\infty}^{\infty} q^{\frac{m^2}{2}} a^{im\alpha \Lambda^m} \right) Q_0(q),$$

where

$$Q_0(q) = \text{diag}(q^{-\frac{1}{2}m^2})_{m \in \mathbb{Z}}$$
Triangular boundary operators $\hat{Q}(q), \hat{Q}(\bar{q})$ of Toeplitz type (cont’d)

Example (cont’d)

The infinite product formula for Jacobi theta functions implies

$$
\sum_{n=-\infty}^{\infty} q^{n^2} e^{i\alpha m} z^n = \nu(q) \prod_{n=1}^{\infty} (1 + q^{n-\frac{1}{2}} e^{i\alpha} z)(1 + q^{n-\frac{1}{2}} e^{-i\alpha} z^{-1})
$$

where

$$
\nu(q) = \prod_{n=1}^{\infty} (1 - q^n).
$$

Expressing the factors in the infinite product as

$$
1 + q^{n-\frac{1}{2}} e^{i\alpha} z = \exp \left(- \sum_{k=1}^{\infty} \frac{(-1)^k}{k} e^{i\alpha k} q^{k(n-\frac{1}{2})} z^k \right)
$$

and

$$
1 + q^{n-\frac{1}{2}} e^{-i\alpha} z = \exp \left(- \sum_{k=1}^{\infty} \frac{(-1)^k}{k} e^{-i\alpha k} q^{k(n-\frac{1}{2})} z^{-k} \right)
$$
Triangular boundary operators $\hat{Q}(q), \hat{Q}(\bar{q})$ of Toeplitz type (cont’d)

Example (cont’d)

Replacing the complex parameter z by the infinite shift matrix Λ, we obtain the factorization

$$Q(q) = \nu(q)Q_0(q)Q_-(\alpha, q)Q_+(\alpha, q)Q_0(q)$$

where

$$Q_{\pm}(\alpha, q) = \prod_{n=1}^{\infty} \gamma_{\pm}(m, \alpha, q)$$

are lower/upper triangular infinite Toeplitz matrices, and

$$\gamma_{\pm}(n, \alpha, q) := \exp \left(- \sum_{k=1}^{\infty} \frac{(-1)^k}{k} e^{i \alpha k} q^{k(n - \frac{1}{2})} \Lambda^{\pm k} \right).$$
Triangular boundary operators \(\hat{Q}(q), \hat{Q}(\bar{q}) \) of Toeplitz type (cont’d)

Example (cont’d)

The fermionic representation of this infinite matrix is therefore given by

\[
\hat{Q} = \nu(q)\hat{C}(\phi(q))\hat{Q}_-(\alpha, q)\hat{Q}_+(\alpha, q)\hat{C}(\phi(q))
\]

where

\[
\hat{Q}_\pm(\alpha, q) = \prod_{n=1}^{\infty} \hat{\gamma}_\pm(n, \alpha, q) = \exp \left(- \sum_{k=1}^{\infty} \frac{(-1)^k e^{i\alpha k} q^{\frac{k}{2}}}{k(1 - q^k)} J_{\pm k} \right)
\]

\[
\hat{\gamma}_\pm(n, \alpha, q) := \exp \left(- \sum_{k=1}^{\infty} \frac{(-1)^k e^{i\alpha k} q^{k(n-\frac{1}{2})}}{k} J_{\pm k} \right)
\]

\[
\phi(q) := \{\phi_j(q)\}, \quad \phi_j(q) = -i\pi \tau j^2, \quad j \in \mathbb{Z}.
\]
Triangular boundary operators $\hat{Q}(q), \hat{Q}(\tilde{q})$ of Toeplitz type (cont’d)

Example (cont’d)

The formula for the τ function therefore becomes

$$\tau_g(N, t) = r_0(N, \phi(q)) \langle N | \hat{Q}_+ (\alpha, q) \hat{C}(T) \hat{g}(\alpha, q) | N \rangle,$$

where

$$\hat{g}(\alpha, q) := \hat{Q}_+^{-1}(\alpha, q) \hat{Q}_-^{-1}(\alpha, q) \hat{C}^{-1}(\phi(q)) \hat{g},$$

$$T_j(q, t) := \sum_{k=1}^{\infty} t_j e^{i k \alpha} q^{-j k}.$$
Example (cont’d)

Similarly, we introduce a second pair \((\alpha(\tilde{q}), \tilde{q} = e^{2\pi i \tilde{\tau}})\) and define

\[
\hat{Q}_\pm(\tilde{\alpha}, \tilde{q}) := \hat{Q}_\pm^{-1}(\tilde{\alpha}, \tilde{q}).
\] (2.1)

Then the 2-Toda \(\tau\) function becomes

\[
\tau_g(N, t, \tilde{t}) = r_0(N, \phi(q) - \tilde{\phi}(\tilde{q})) \langle N \mid \hat{Q}_+ (\alpha, q) \hat{C}(T) \hat{g}(\alpha, \tilde{\alpha}, \tilde{q}) \hat{C}(\tilde{T}) \hat{Q}_- (\alpha, \tilde{q}) \mid N \rangle,
\]

where \(\hat{g}(\alpha, \tilde{\alpha}, q, \tilde{q}) =

\[
:= \hat{Q}_+^{-1}(\alpha, q) \hat{Q}_-^{-1}(\alpha, q) \hat{C}^{-1}(\phi(q)) \hat{g} \hat{C}^{-1}(\phi(\tilde{q})) \hat{Q}_+^{-1}(\tilde{\alpha}, \tilde{q}) \hat{Q}_-^{-1}(\tilde{\alpha}, \tilde{q}),
\]

\(\tilde{T}_j := \sum_{k=1}^{\infty} \tilde{t}_j e^{ik\tilde{\alpha}} \tilde{q}^{-jk}, \quad \phi_j(\tilde{q}) = -i\pi \tilde{\tau}j^2, \quad j \in \mathbb{Z}.
\)
Triangular boundary operators $\hat{Q}(q), \hat{Q}(\tilde{q})$ of Toeplitz type (cont’d)

In particular, choosing \hat{g} so that

$$\hat{g}(\alpha, \tilde{\alpha}, q, \tilde{q}) = 1,$$

setting

$$\tilde{\alpha} = \alpha = \pi, \quad q = \tilde{q}, \quad t_i = \tilde{t}_i$$

and replacing t_i by $\frac{1}{2} t_i$, we obtain the q-deformed partition function for plane partitions that was studied by Okounkov and Pandharipande, and by Nakatsu and Takahashi.

Other choices for the q_j’s give other “convolution flow” representations of various τ functions (cf. e.g. Wiegmann, Bettelheim, et al).
Background and related work

Fermionic approach to \(\tau \) functions

Convolution symmetries, Matrix Models, \(\tau \) functions

J. Harnad and A. Yu. Orlov, “Convolution symmetry flows and integrable hierarchies” (in preparation)

Applications of convolution flows

