On Symmetry Reduction of Some $P(1,4)$-invariant Differential Equations

V.M. Fedorchuk
Pedagogical University, Cracow, Poland;
Pidstryhach IAPMM of the NAS of Ukraine, L’viv, Ukraine
E-mail: vASFed@gmail.com,

V.I. Fedorchuk
Pidstryhach IAPMM of the NAS of Ukraine, L’viv, Ukraine
Introduction

The development of theoretical and mathematical physics has required various extensions of the four-dimensional Minkowski space $M(1,3)$ and, correspondingly, various extensions of the Poincaré group $P(1,3)$.
The group $P(1,4)$

The natural extension of this group is the generalized Poincaré group $P(1,4)$. The group $P(1,4)$ is the group of rotations and translations of the five-dimensional Minkowski space $M(1,4)$.
The group $P(1,4)$ has many applications in theoretical and mathematical physics.

See for example:

The Lie algebra of the group P(1,4) is given by the 15 basis elements \(M_{\mu\nu} = - M_{\nu\mu}, \) \(\mu, \nu = 0,1,\ldots,4 \)
and \(P'_{\mu}, \) \(\mu = 0,1,\ldots,4, \) satisfying the commutation relations

\[
\begin{align*}
\left[P'_{\mu}, P'_{\nu} \right] &= 0 \\
\left[M'_{\mu\nu}, P'_\sigma \right] &= g_{\mu\sigma} P'_{\nu} - g_{\nu\sigma} P'_{\mu} \\
\left[M'_{\mu\nu}, M'_{\rho\sigma} \right] &= g_{\mu\rho} M'_{\nu\sigma} + g_{\nu\sigma} M'_{\mu\rho} - g_{\nu\rho} M'_{\mu\sigma} - g_{\mu\sigma} M'_{\nu\rho}
\end{align*}
\]

where \(g_{00} = -g_{11} = -g_{22} = -g_{33} = -g_{44} = 1, g_{\mu\nu} = 0, \) \(\text{if} \mu \neq \nu. \) Here and in what follows,

\(M'_{\mu\nu} = i M_{\mu\nu} \)
The Lie algebra of the group $P(1,4)$

Further, we will use the following basis elements:

$$G = M'_{40}, \quad L_1 = M'_{32}, \quad L_2 = -M'_{31}, \quad L_3 = M'_{21},$$

$$P_a = M'_{4a} - M'_{a0}, \quad C_a = M'_{4a} + M'_{a0}, \quad (a = 1, 2, 3),$$

$$X_0 = \frac{1}{2}(P'_0 - P'_4), \quad X_k = P'_k \quad (k = 1, 2, 3), \quad X_4 = \frac{1}{2}(P'_0 + P'_4).$$
The group P(1,4)

Continuous subgroups of the group P(1,4) have been described in

The group $P(1,4)$ is the smallest group which contains, as subgroups:

- the symmetry group of non-relativistic physics (extended Galilei group $\tilde{G}(1,3)$)
- The symmetry group of relativistic physics (Poincaré group $P(1,3)$)

P(1,4)-invariant equations

Among the P(1,4)-invariant equations in the space $M(1,4) \times \mathbb{R}(u)$ there is
\[5u = F(u), \]

where

\[u = u(x), \quad x = (x_0, x_1, x_2, x_3, x_4) \in M(1, 4), \]

\[u = u_{00} - u_{11} - u_{22} - u_{33} - u_{44}, \]

\[u_{nn} = \frac{\partial^2 u}{\partial x_{n}^2}, \quad n = 0, \ldots, 4. \]
P(1,4)-invariant equations

To perform the symmetry reduction of the above mentioned equation, we have used functional bases of invariants of nonconjugate subgroups of the group P(1,4).
However, it turned out that the reduced equations, obtained with the help of nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$ of the given rank, were of different types.
In my talk I plan to present new interesting facts arising during symmetry reduction of some P(1,4)-invariant differential equations.
Let us present the 1st interesting fact.
Let us consider an Ansatz

\[u(x) = \varphi(\omega_1, \omega_2), \]

\[\omega_1 = x_4, \]

\[\omega_2 = \left(x_1^2 + x_2^2 + x_3^2 \right)^{1/2}, \]

where \(\omega_1, \omega_2 \) are invariants of nonconjugate subalgebras of the Lie algebra of the group \(P(1,4) \)
P(1,4)-invariant equations

Reduced equation

\[\varphi_{11} + \varphi_{22} + 2\varphi_2 \omega_2^{-1} = -F(\varphi), \]

\[\varphi_i = \frac{\partial \varphi}{\partial \omega_i}, \quad \varphi_{ik} = \frac{\partial^2 \varphi}{\partial \omega_i \omega_k}, \quad i, k = 1, 2 \]

is two-dimensional PDE.
Let us consider an Ansatz

\[u(x) = \varphi(\omega_1, \omega_2), \]

\[\omega_1 = x_0 + x_4, \]

\[\omega_2 = \left(x_1^2 + x_2^2 + x_3^2 \right)^{1/2}, \]

where \(\omega_1, \omega_2 \) are invariants of nonconjugate subalgebras of the Lie algebra of the group \(\text{P}(1,4) \).
P(1,4)-invariant equations

Reduced equation

\[\varphi_{22} + 2\varphi_2 \omega_2^{-1} = -F(\varphi), \]

\[\varphi_i = \frac{\partial \varphi}{\partial \omega_i}, \quad \varphi_{ik} = \frac{\partial^2 \varphi}{\partial \omega_i \omega_k}, \quad i, k = 1, 2. \]

is ODE.
Consequently, instead of the formula

$$\rho = n - R$$

we obtain

$$\rho = n - R - 1$$

n denotes a number of independent variables of system (S),

ρ denotes a number of independent variables of system (S/H).

P(1,4)-invariant equations
P(1,4)-invariant equations

More details about it can be found in

P(1,n)-invariant equations

It should be noted that Grundland, Harnad, and Winternitz were the first to point out and to try to investigate this fact.

More details about it can be found in

P(1,4)-invariant equations

Among the P(1,4)-invariant equations in the space $M(1,3) \times \mathbb{R}(u)$ there are
P(1,4)-invariant equations

\[u(1 - u_v u^v) + u_{\mu \nu} u^\mu u^\nu = 0, \]

\[\text{det} ||u_{\mu \nu}|| = 0, \]

\[(u_0)^2 - (u_1)^2 - (u_2)^2 - (u_3)^2 = 1, \]
P(1,4)-invariant equations

where

\[u = u(x), \quad x = (x_0, x_1, x_2, x_3) \in M(1, 3), \]

\[u_\mu = \frac{\partial u}{\partial x_\mu}, \quad u^\mu = g^{\mu\nu} u_\nu, \quad u_{\mu\nu} = \frac{\partial^2 u}{\partial x_\mu x_\nu}. \]

\(\mu, \nu = 0, 1, 2, 3. \)

\(\Box \) is the d’Alembertian.
Let us present the 2nd interesting fact.
P(1, 4)-invariant equations

Let us consider an Ansatz

$$2x_0 \omega - (x_1^2 + x_2^2 + x_3^2) = -\varphi(\omega),$$

where $$\omega = x_0 + u,$$

where $$\omega$$ is an invariant of nonconjugate subalgebras of the Lie algebra of the group P(1, 4).
P(1,4)-invariant equations

Reduced equations

\[\varphi'' \omega^2 - 8 \omega \varphi' + 8 \varphi - 6 \omega^2 = 0, \]

\[\frac{1}{2} \omega^2 \varphi'' - \omega \varphi' + \varphi = 0, \]

\[\omega \varphi' - \varphi + \omega^2 = 0, \]

\[\varphi' = \frac{d \varphi}{d \omega}, \quad \varphi'' = \frac{d^2 \varphi}{d \omega^2}, \]

respectively.
P(1,4)-invariant equations

More details about it can be found in

Let us present the 3rd interesting fact.
P(1,4)-invariant equations

Let us consider so-called necessary conditions for the exist invariant solutions.

More details about it can be found in

Some nonconjugate subalgebras of the given rank of the Lie algebra of the group P(1,4) don’t satisfy so-called necessary conditions for the exist invariant solutions.

P(1,4)-invariant equations
P(1,4)-invariant equations

It means, that from the invariants of some subgroups of the group P(1,4) we cannot construct Ansatizes which provide the symmetry reduction.
P(1,4)-invariant equations

An example:

\[\langle L_3, X_0 + X_4, X_4 - X_0 \rangle \]

\[x_3, \ (x_1^2 + x_2^2)^{1/2} \]
P(1,4)-invariant equations

It means that using only the rank of those nonconjugate subalgebras, we cannot explain differences in the properties of the reduced equations.
P(1,4)-invariant equations

It is known that the nonconjugate subalgebras of the Lie algebra of the group P(1,4) of the same rank may have different structural properties.
Therefore, to explain above mentioned interesting facts, we suggest to try to investigate the connections between structural properties of nonconjugate subalgebras of the same rank of the Lie algebra of the group $\mathbb{P}(1,4)$ and the properties of the reduced equations corresponding to them.
P(1,4)-invariant equations

In order to realize above mentioned investigation we have to perform the following steps:

1. Classify low-dimensional nonconjugate subalgebras of the Lie algebra of the group P(1,4).
2. Classify functional bases of invariants those subalgebras.
3. Classify of the obtained reduced equations.
The complete classification of real structures of Lie algebras of dimension less or equal five has been obtained by Mubarakzyanov

Some of the results obtained

Let us present some of the results obtained
Classification of low-dimensional subalgebras

By now, we have classified all low-dimensional nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$ into classes of isomorphic subalgebras.
Classification of low-dimensional subalgebras

The results of the classification can be found in:

Classification of low-dimensional subalgebras

There are 20 one-dimensional nonconjugate subalgebras of the Lie algebra of the group $\text{P}(1,4)$.
All of them belong to the one type A_1 (step 1).

Consequently, all invariants of these subalgebras belong to the same type (step 2).
Classification of invariants

Some examples:

\[\langle P_3 \rangle (A_1) \]

\[x_1, x_2, x_0 + u, \]

\[(x_0^2 - x_3^2 - u^2)^{1/2} \]
Classification of invariants

Some examples:

\[\langle G \rangle (A_1) \]

\[x_1, x_2, x_3, (x_0^2 - u^2)^{1/2} \]
Classification of low-dimensional subalgebras

There are 49 two-dimensional nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$
Classification of invariants

All of them belong to the two types: $2A_1$ and A_2 (step 1).

Consequently, all invariants of these subalgebras belong to the two types, respectively (step 2).
Classification of invariants

Some examples:

\[\langle P_1, P_2 \rangle (2A_1) \]

\[x_3, x_0 + u, \]

\[(x_0^2 - x_1^2 - x_2^2 - u^2)^{1/2} \]
Classification of invariants

Some examples:

\[\langle -G, P_3 \rangle \ (A_2) \]

\[x_1, x_2, (x_0^2 - x_3^2 - u^2)^{1/2} \]
Classification of low-dimensional subalgebras

There are 94 three-dimensional nonconjugate subalgebras of the Lie algebra of the group P(1,4)
Classification of invariants

All of them belong to the 10 types: $3A_1$, $A_1 + A_2$, $A_{3,1}, \ldots, A_{3,6}$ (step 1).

Consequently, all invariants of these subalgebras belong to 10 types, respectively (step 2).
Classification of invariants

Some examples:

\[\langle P_1, P_2, P_3 \rangle (3A_1) \]

\[x_3, x_0 + u, \]

\[(x_0^2 - x_1^2 - x_2^2 - u^2)^{1/2} \]
Classification of invariants

Some examples:

\[\langle -G, P_3 \rangle \bigoplus \langle L_3 \rangle \ (A_2 \bigoplus A_1) \]

\[x_3, \ (x_1^2 + x_2^2)^{1/2}, \ (x_0^2 - u^2)^{1/2} \]
Until now, we have classified the functional bases of invariants in the space $\text{M}(1,3) \times \text{R}(u)$ of one, two, and three-dimensional non-conjugate subalgebras of the Lie algebra of the group $\text{P}(1,4)$ using the classification of these subalgebras.
Classification of invariants

In other words, we have established a connection between the classification of one, two, and three-dimensional nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$ and their invariants in the space $M(1,3) \times \mathbb{R}(u)$.
Thank you for your attention!