Riemann-Hilbert Problems and new Soliton Equations

V. S. Gerdjikov
Institute for Nuclear Research and Nuclear Energy
Sofia, Bulgaria

with D.M. Mladenov, A.A. Stefanov, S.K. Varbev

Theoretical Physics Department, Faculty of Physics,
Sofia University ”St. Kliment Ohridski”,
5 James Bourchier Blvd, 1164 Sofia, Bulgaria

It is my pleasure to congratulate Professor Jan Slawianowski for his 70-th birthday!
PLAN

• RHP with canonical normalization
• Jets of order k
• Reductions of polynomial bundles
• On N-wave equations – $k = 1$
• New N-wave equations – $k \geq 2$
• mKdV equations related to simple Lie algebras
• Conclusions and open questions
Based on:

- V. S. Gerdjikov. *Derivative Nonlinear Schrödinger Equations with \(\mathbb{Z}_N \) and \(\mathbb{D}_N \)–Reductions.* Romanian Journal of Physics, 58, Nos. 5-6, 573-582 (2013).

- V. S. Gerdjikov, A. B. Yanovski *On soliton equations with \(\mathbb{Z}_h \)

RHP with canonical normalization

\[\xi^+(x, t, \lambda) = \xi^-(x, t, \lambda)G(x, t, \lambda), \quad \lambda^k \in \mathbb{R}, \quad \lim_{\lambda \to \infty} \xi^+(x, t, \lambda) = 1, \]

\[\xi^\pm(x, t, \lambda) \in \mathcal{G} \]

Consider particular type of dependence \(G(x, t, \lambda): \)

\[i \frac{\partial G}{\partial x} - \lambda^k [J, G(x, t, \lambda)] = 0, \quad i \frac{\partial G}{\partial t} - \lambda^k [K, G(x, t, \lambda)] = 0. \]

where \(J \in \mathfrak{h} \subset \mathfrak{g}. \)

The canonical normalization of the RHP:

\[\xi^\pm(x, t, \lambda) = \exp Q(x, t, \lambda), \quad Q(x, t, \lambda) = \sum_{k=1}^{\infty} Q_k(x, t) \lambda^{-k}. \]

where all \(Q_k(x, t) \in \mathfrak{g}. \) However,

\[\mathcal{J}(x, t, \lambda) = \xi^\pm(x, t, \lambda)J \hat{\xi}^\pm(x, t, \lambda), \quad \mathcal{K}(x, t, \lambda) = \xi^\pm(x, t, \lambda)K \hat{\xi}^\pm(x, t, \lambda), \]
belong to the algebra \mathfrak{g} for any J and K from \mathfrak{g}. If in addition K also belongs to the Cartan subalgebra \mathfrak{h}, then

$$[\mathcal{J}(x, t, \lambda), \mathcal{K}(x, t, \lambda)] = 0.$$

Zakharov-Shabat theorem

Theorem 1. Let $\xi^\pm(x, t, \lambda)$ be solutions to the RHP whose sewing function depends on the auxiliary variables x and t as above. Then $\xi^\pm(x, t, \lambda)$ are fundamental solutions of the following set of differential operators:

$$L\xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial x} + U_s(x, t, \lambda) \xi^\pm(x, t, \lambda) - \lambda^k [J, \xi^\pm(x, t, \lambda)] = 0,$$

$$M\xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial t} + V(x, t, \lambda) \xi^\pm(x, t, \lambda) - \lambda^k [K, \xi^\pm(x, t, \lambda)] = 0.$$

Proof. Introduce the functions:

$$g^\pm(x, t, \lambda) = i \frac{\partial \xi^\pm}{\partial x} \hat{\xi}^\pm(x, t, \lambda) + \lambda^k \xi^\pm(x, t, \lambda) J \hat{\xi}^\pm(x, t, \lambda),$$

$$p^\pm(x, t, \lambda) = i \frac{\partial \xi^\pm}{\partial t} \hat{\xi}^\pm(x, t, \lambda) + \lambda^k \xi^\pm(x, t, \lambda) K \hat{\xi}^\pm(x, t, \lambda),$$
and using
\[i \frac{\partial G}{\partial x} - \lambda^k [J, G(x, t, \lambda)] = 0, \quad i \frac{\partial G}{\partial t} - \lambda^k [K, G(x, t, \lambda)] = 0. \]
prove that
\[g^+(x, t, \lambda) = g^-(x, t, \lambda), \quad p^+(x, t, \lambda) = p^-(x, t, \lambda), \]
which means that these functions are analytic functions of \(\lambda \) in the whole complex \(\lambda \)-plane. Next we find that:
\[\lim_{\lambda \to \infty} g^+(x, t, \lambda) = \lambda^k J, \quad \lim_{\lambda \to \infty} p^+(x, t, \lambda) = \lambda^k K. \]
and make use of Liouville theorem to get
\[g^+(x, t, \lambda) = g^-(x, t, \lambda) = \lambda^k J - \sum_{l=1}^{k} U_{s; l}(x, t) \lambda^{k-l}, \]
\[p^+(x, t, \lambda) = p^-(x, t, \lambda) = \lambda^k K - \sum_{l=1}^{k} V_l(x, t) \lambda^{k-l}. \]
We shall see below that the coefficients $U_l(x, t)$ and $V_l(x, t)$ can be expressed in terms of the asymptotic coefficients Q_s of $\xi^{\pm}(x, t, \lambda)$.

Now remember the definition of $g^+(x, t, \lambda)$

$$g^\pm(x, t, \lambda) = i \frac{\partial \hat{\xi}^\pm}{\partial x} \hat{\xi}^\pm(x, t, \lambda) + \lambda^k \xi^\pm(x, t, \lambda) J \hat{\xi}^\pm(x, t, \lambda)$$

$$= \lambda^k J - \sum_{l=1}^{k} U_{s; l}(x, t) \lambda^{k-l},$$

Multiply both sides by $\xi^{\pm}(x, t, \lambda)$ and move all the terms to the left:

$$i \frac{\partial \xi^\pm}{\partial x} + \sum_{l=1}^{k} U_l(x, t) \lambda^{k-l} \xi^\pm(x, t, \lambda) - \lambda^k [J, \xi^\pm(x, t, \lambda)] = 0,$$

i.e. $L \xi^{\pm}(x, t, \lambda) = 0$. \square

Lemma 1. The operators L and M commute

$$[L, M] = 0,$$
i.e. the following set of equations hold:

\[i \frac{\partial U}{\partial t} - i \frac{\partial V}{\partial x} + [U(x, t, \lambda) - \lambda^k J, V(x, t, \lambda) - \lambda^k K] = 0. \]

where

\[U(x, t, \lambda) = \sum_{l=1}^{k} U_l(x, t) \lambda^{k-l}, \quad V(x, t, \lambda) = \sum_{l=0}^{k} V_l(x, t) \lambda^{k-l}. \]

Jets of order \(k \)

How to parametrize \(U_s(x, t, \lambda) \) and \(V(x, t, \lambda) \)?

Use:

\[\xi^\pm(x, t, \lambda) = \exp Q(x, t, \lambda), \quad Q(x, t, \lambda) = \sum_{k=1}^{\infty} Q_k(x, t) \lambda^{-k}. \]
and consider the jets of order k of $\mathcal{J}(x, \lambda)$ and $\mathcal{K}(x, \lambda)$:

\[
\mathcal{J}(x, t, \lambda) \equiv \left(\lambda^k \xi^\pm(x, t, \lambda) J_l \hat{\xi}^\pm(x, t, \lambda) \right)_+ = \lambda^k J - U(x, t, \lambda),
\]

\[
\mathcal{K}(x, t, \lambda) \equiv \left(\lambda^k \xi^\pm(x, t, \lambda) K \hat{\xi}^\pm(x, t, \lambda) \right)_+ = \lambda^k K - V(x, t, \lambda).
\]

Express $U(x) \in \mathfrak{g}$ in terms of $Q_s(x)$:

\[
\mathcal{J}(x, t, \lambda) = J + \sum_{k=1}^{\infty} \frac{1}{k!} \text{ad}^k Q \mathcal{J}, \quad \mathcal{K}(x, t, \lambda) = K + \sum_{k=1}^{\infty} \frac{1}{k!} \text{ad}^k Q \mathcal{K},
\]

\[
\text{ad}_Q Z = [Q, Z], \quad \text{ad}^2_Q Z = [Q, [Q, Z]], \quad \ldots
\]

and therefore for U_l we get:

\[
U_1(x, t) = -\text{ad}_Q J, \quad U_2(x, t) = -\text{ad}_Q^2 J - \frac{1}{2} \text{ad}_Q^3 J
\]

\[
U_3(x, t) = -\text{ad}_Q^3 J - \frac{1}{2} (\text{ad}_Q^2 \text{ad}_Q + \text{ad}_Q \text{ad}_Q^2) J - \frac{1}{6} \text{ad}_Q^4 J.
\]

and similar expressions for $V_l(x, t)$ with J replaced by K.
Reductions of polynomial bundles

a) \[A \xi^+;^\dagger (x, t, \epsilon \lambda^*) \hat{A} = \hat{\xi}^-(x, t, \lambda), \quad AQ^\dagger (x, t, \epsilon \lambda^*) \hat{A} = -Q(x, t, \lambda), \]
b) \[B \xi^+;^\ast (x, t, \epsilon \lambda^*) \hat{B} = \hat{\xi}^-(x, t, \lambda), \quad BQ^* (x, t, \epsilon \lambda^*) \hat{B} = Q(x, t, \lambda), \]
c) \[C \xi^+;T (x, t, -\lambda) \hat{C} = \hat{\xi}^-(x, t, \lambda), \quad CQ^\dagger (x, t, -\lambda) \hat{C} = -Q(x, t, \lambda), \]

where \(\epsilon^2 = 1 \) and \(A, B \) and \(C \) are elements of the group \(G \) such that \(A^2 = B^2 = C^2 = 1 \). As for the \(\mathbb{Z}_N \)-reductions we may have:

\[D \xi^\pm (x, t, \omega \lambda) \hat{D} = \xi^\pm (x, t, \lambda), \quad DQ(x, t, \omega \lambda) \hat{D} = Q(x, t, \lambda), \]

where \(\omega^N = 1 \) and \(D^N = 1 \).
On N-wave equations $- k = 1$

Lax representation involves two Lax operators linear in λ:

$$L\xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial x} + [J, Q(x, t)]\xi^\pm(x, t, \lambda) - \lambda [J, \xi^\pm(x, t, \lambda)] = 0,$$

$$M\xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial t} + [K, Q(x, t)]\xi^\pm(x, t, \lambda) - \lambda [K, \xi^\pm(x, t, \lambda)] = 0.$$

The corresponding equations take the form:

$$i \left[J, \frac{\partial Q}{\partial t} \right] - i \left[K, \frac{\partial Q}{\partial x} \right] - [[J, Q], [K, Q(x, t)]] = 0$$

$$Q(x, t) = \begin{pmatrix} 0 & u_1 & u_3 \\ -v_1 & 0 & u_2 \\ -v_3 & -v_2 & 0 \end{pmatrix}, \quad J = \text{diag} (a_1, a_2, a_3),$$

$$K = \text{diag} (b_1, b_2, b_3),$$
Then the 3-wave equations take the form:

\[
\begin{align*}
\frac{\partial u_1}{\partial t} - \frac{a_1 - a_2}{b_1 - b_2} \frac{\partial u_1}{\partial x} + \kappa \epsilon_1 \epsilon_2 u_2^* u_3 &= 0, \\
\frac{\partial u_2}{\partial t} - \frac{a_2 - a_3}{b_2 - b_3} \frac{\partial u_2}{\partial x} + \kappa \epsilon_1 u_1^* u_3 &= 0, \\
\frac{\partial u_3}{\partial t} - \frac{a_1 - a_3}{b_1 - b_3} \frac{\partial u_3}{\partial x} + \kappa \epsilon_2 u_1^* u_2^* &= 0,
\end{align*}
\]

where

\[
\kappa = a_1(b_2 - b_3) - a_2(b_1 - b_3) + a_3(b_1 - b_2).
\]

New 3-wave equations - \(k \geq 2 \)

Let \(g = sl(3) \) and

\[
Q_1(x, t) = \begin{pmatrix} 0 & u_1 & u_3 \\
-v_1 & 0 & u_2 \\
-v_3 & -v_2 & 0 \end{pmatrix}, \quad Q_2(x, t) = \begin{pmatrix} q_{11} & w_1 & w_3 \\
-z_1 & q_{22} & w_2 \\
-z_3 & -z_2 & q_{33} \end{pmatrix},
\]
Fix up \(k = 2 \). Then the Lax pair becomes

\[
L \xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial x} + U(x, t, \lambda) \xi^\pm(x, t, \lambda) - \lambda^2 [J, \xi^\pm(x, t, \lambda)] = 0,
\]

\[
M \xi^\pm \equiv i \frac{\partial \xi^\pm}{\partial t} + V(x, t, \lambda) \xi^\pm(x, t, \lambda) - \lambda^2 [K, \xi^\pm(x, t, \lambda)] = 0,
\]

where

\[
U \equiv U_2 + \lambda U_1 = \left([J, Q_2(x)] - \frac{1}{2} [[J, Q_1], Q_1(x)] \right) + \lambda [J, Q_1],
\]

\[
V \equiv V_2 + \lambda V_1 = \left([K, Q_2(x)] - \frac{1}{2} [[K, Q_1], Q_1(x)] \right) + \lambda [K, Q_1].
\]

Impose a \(\mathbb{Z}_2 \)-reduction of type a) with \(A = \text{diag} (1, \epsilon, 1) \), \(\epsilon^2 = 1 \). Thus \(Q_1 \) and \(Q_2 \) get reduced into:

\[
Q_1 = \begin{pmatrix}
0 & u_1 & 0 \\
\epsilon u_1^* & 0 & u_2 \\
0 & \epsilon u_2^* & 0
\end{pmatrix}, \quad Q_2 = \begin{pmatrix}
0 & 0 & w_3 \\
0 & 0 & 0 \\
w_3^* & 0 & 0
\end{pmatrix},
\]
and we obtain new type of integrable 3-wave equations:

\[i(a_1 - a_2) \frac{\partial u_1}{\partial t} - i(b_1 - b_2) \frac{\partial u_1}{\partial x} + \epsilon \kappa u_2^* u_3 + \epsilon \frac{\kappa(a_1 - a_2)}{(a_1 - a_3)} u_1 |u_2|^2 = 0, \]

\[i(a_2 - a_3) \frac{\partial u_2}{\partial t} - i(b_2 - b_3) \frac{\partial u_2}{\partial x} + \epsilon \kappa u_1^* u_3 - \epsilon \frac{\kappa(a_2 - a_3)}{(a_1 - a_3)} |u_1|^2 u_2 = 0, \]

\[i(a_1 - a_3) \frac{\partial u_3}{\partial t} - i(b_1 - b_3) \frac{\partial u_3}{\partial x} - \frac{i \kappa}{a_1 - a_3} \frac{\partial (u_1 u_2)}{\partial x} + \epsilon \kappa \left(\frac{a_1 - a_2}{a_1 - a_3} |u_1|^2 + \frac{a_2 - a_3}{a_1 - a_3} |u_2|^2 \right) u_1 u_2 + \epsilon \kappa u_3 (|u_1|^2 - |u_2|^2) = 0, \]

where

\[\kappa = a_1(b_2 - b_3) - a_2(b_1 - b_3) + a_3(b_1 - b_2), \quad u_3 = w_3 + \frac{2a_2 - a_1 - a_3}{2(a_1 - a_3)} u_1 u_2. \]

The diagonal terms in the Lax representation are \(\lambda \)-independent.
Two of them read:

\[i(a_1 - a_2) \frac{\partial |u_1|^2}{\partial t} - i(b_1 - b_2) \frac{\partial |u_1|^2}{\partial x} - \epsilon \kappa (u_1 u_2 u_3^* - u_1^* u_2 u_3) = 0, \]

\[i(a_2 - a_3) \frac{\partial |u_2|^2}{\partial t} - i(b_2 - b_3) \frac{\partial |u_2|^2}{\partial x} - \epsilon \kappa (u_1 u_2 u_3^* - u_1^* u_2 u_3) = 0, \]

These relations are satisfied identically as a consequence of the NLEE.

New types of 4-wave interactions

The Lax pair for these new equations will be provided by:

\[L \psi = i \frac{\partial \psi}{\partial x} + (U_2(x, t) + \lambda U_1(x, t) - \lambda^2 J) \psi(x, t, \lambda) = 0, \]

\[M \psi = i \frac{\partial \psi}{\partial t} + (V_2(x, t) + \lambda V_1(x, t) - \lambda^2 K) \psi(x, t, \lambda) = 0, \]
where $U_j(x, t)$ and $V_j(x, t)$ are fast decaying smooth functions taking values in the Lie algebra $so(5)$

$$U_1(x, t) = [J, Q_1(x, t)], \quad U_2(x, t) = [J, Q_2(x, t)] - \frac{1}{2} \text{ad}_{Q_1}^2 J,$$

$$V_1(x, t) = [K, Q_1(x, t)], \quad V_2(x, t) = [K, Q_2(x, t)] - \frac{1}{2} \text{ad}_{Q_1}^2 K.$$

Here $\text{ad}_{Q_1} X \equiv [Q_1(x, t), X]$.

Assume $Q_1(x, t)$ and $Q_2(x, t)$ to be generic elements of $so(5)$:

$$Q_1(x, t) = \sum_{\alpha \in \Delta_+} (q^1_\alpha E_\alpha + p^1_\alpha E_{-\alpha}) + r^1_1 H_{e_1} + r^1_2 H_{e_2},$$

$$Q_2(x, t) = \sum_{\alpha \in \Delta_+} (q^2_\alpha E_\alpha + p^2_\alpha E_{-\alpha}) + r^2_1 H_{e_1} + r^2_2 H_{e_2},$$

$$J = a_1 H_{e_1} + a_2 H_{e_2} = \text{diag} (a_1, a_2, 0, -a_2, -a_1),$$

$$K = b_1 H_{e_1} + b_2 H_{e_2} = \text{diag} (b_1, b_2, 0, -b_2, -b_1),$$
Next we impose on $Q_1(x,t)$ and $Q_2(x,t)$ the natural reduction

$$B_0 U(x,t, \epsilon \lambda^*)^\dagger B_0^{-1} = U(x,t, \lambda), \quad B_0 = \text{diag} (1, \epsilon, 1, \epsilon, 1), \quad \epsilon^2 = 1.$$

As a result:

$$B_0 (\chi^+(x,t, \epsilon \lambda^*))^\dagger B_0^{-1} = (\chi^-(x,t, \lambda))^{-1}, \quad B_0 (T(t, \epsilon \lambda^*))^\dagger B_0^{-1} = (T(t, \lambda))^{-1},$$

which provide $p_1^\alpha = \epsilon (q_1^\alpha)^*, \quad p_2^\alpha = \epsilon (q_2^\alpha)^*$. Then the Lax representation will be a (rather complicated) system of 8 NLEE for the 8 independent matrix elements q_1^α and q_2^α.

However we can impose additional \mathbb{Z}_2 reduction condition

$$D \xi^\pm (x,t,-\lambda) \hat{D} = \xi^\pm (x,t,\lambda), \quad D Q(x,t,-\lambda) \hat{D} = Q(x,t,\lambda),$$

$$D = \text{diag} (1, -1, 1, -1, 1)$$
\[Q_1(x, t) = u_1 E_{e_1 - e_2} + u_2 E_{e_2} + u_3 E_{e_1 + e_2} + v_1 E_{-e_1 + e_2} + v_2 E_{-e_2} + v_3 E_{-e_1 - e_2} \]
\[= \begin{pmatrix} 0 & u_1 & 0 & u_3 & 0 \\ v_1 & 0 & u_2 & 0 & u_3 \\ 0 & v_2 & 0 & u_2 & 0 \\ v_3 & 0 & v_2 & 0 & u_1 \\ 0 & v_3 & 0 & v_1 & 0 \end{pmatrix}, \]
\[Q_2(x, t) = u_4 E_{e_1} + v_4 E_{e_1} + w_1 H_{e_1} + w_2 H_{e_2} \]
\[= \begin{pmatrix} w_1 & 0 & u_4 & 0 & 0 \\ 0 & w_2 & 0 & 0 & 0 \\ w_4 & 0 & 0 & 0 & u_4 \\ 0 & 0 & 0 & -w_2 & 0 \\ 0 & 0 & -v_4 & 0 & -w_1 \end{pmatrix}, \]
\[J = a_1 H_{e_1} + a_2 H_{e_2} = \text{diag} (a_1, a_2, 0, -a_2, -a_1), \]
\[K = b_1 H_{e_1} + b_2 H_{e_2} = \text{diag} (b_1, b_2, 0, -b_2, -b_1), \]

Combining both reductions for the matrix elements of \(Q_j(x, t) \) we have:

\[v_1 = \epsilon u_1^*, \quad v_2 = \epsilon u_2^*, \quad v_3 = \epsilon u_3^*, \quad v_4 = u_4^*, \]
The commutativity condition for the Lax pair

\[i \left(\frac{\partial V_2}{\partial x} + \lambda \frac{\partial V_1}{\partial x} \right) - i \left(\frac{\partial U_2}{\partial t} + \lambda \frac{\partial U_1}{\partial t} \right) + [U_2 + \lambda U_1 - \lambda^2 J, V_2 + \lambda V_1 - \lambda^2 K] = 0 \]

must hold identically with respect to \(\lambda \). The terms proportional to \(\lambda^4 \), \(\lambda^3 \) and \(\lambda^2 \) vanish identically. The term proportional to \(\lambda \) and the \(\lambda \)-independent term vanish provided \(Q_i \) satisfy the NLEE:

\[
\begin{align*}
 i \frac{\partial V_1}{\partial t} - i \frac{\partial U_1}{\partial t} + [U_2, V_1] + [U_1, V_1] &= 0, \\
 i \frac{\partial V_2}{\partial t} - i \frac{\partial U_2}{\partial t} + [U_2, V_2] &= 0.
\end{align*}
\]
In components the corresponding NLEE:

\[-2i(a_1 - a_2) \frac{\partial u_1}{\partial t} + 2i(b_1 - b_2) \frac{\partial u_1}{\partial x} + \kappa \epsilon u_2^* (\epsilon u_2^* u_3 - u_1 u_2 - 2u) = 0, \]

\[-2ia_2 \frac{\partial u_2}{\partial t} + 2ib_2 \frac{\partial u_2}{\partial x} - \kappa (u_2 \epsilon (|u_3|^2 - |u_1|^2) + 2u_3 u_4^* + 2\epsilon u_1^* u_4) = 0, \]

\[-2i(a_1 + a_2) \frac{\partial u_3}{\partial t} + 2i(b_1 + b_2) \frac{\partial u_3}{\partial x} + \kappa u_2 (\epsilon u_2^* u_3 - u_1 u_2 + 2u_4) = 0, \]

\[-2ia_1 \frac{\partial u_4}{\partial t} + 2ib_1 \frac{\partial u_4}{\partial x} + i \frac{\partial}{\partial t} (-(2a_2 - a_1)u_1 u_2 + (2a_2 + a_1)\epsilon u_2^* u_3)
+ i(2b_2 - b_1) \frac{\partial(u_1 u_2)}{\partial x} - i(2b_2 + b_1)\epsilon \frac{\partial(u_2^* u_3)}{\partial x} - \kappa (2\epsilon u_4 (|u_1|^2 - |u_3|^2)
+ \epsilon u_1 u_2 (|u_1|^2 + 3|u_3|^2) - u_3 u_2^* (3|u_1|^2 + |u_3|^2)) = 0. \]

Let us now introduce

\[U_4 = u_4 - \frac{1}{2a_1} ((a_1 - a_2)u_1 u_2 + (a_1 + a_2)\epsilon u_3 u_2^*). \]
As a result we get:

\[-2i(a_1 - a_2)\frac{\partial u_1}{\partial t} + 2i(b_1 - b_2)\frac{\partial u_1}{\partial x} - \frac{\kappa \epsilon}{a_1} u_2^*(2a_1 U_4 + \epsilon a_2 u_2^* u_3 + (2a_1 - a_2) u_1 u_2) = 0,\]

\[-2ia_2 \frac{\partial u_2}{\partial t} + 2ib_2 \frac{\partial u_2}{\partial x} - \frac{\kappa \epsilon}{a_1} u_2((2a_1 + a_2)|u_3|^2 - a_2|u_1|^2) - 2\kappa(u_3 U_4^* + \epsilon u_1^* U_4 + u_1^* u_2^* u_3) = 0,\]

\[-2i(a_1 + a_2)\frac{\partial u_3}{\partial t} + 2i(b_1 + b_2)\frac{\partial u_3}{\partial x} + \frac{\kappa}{a_1} u_2(\epsilon(2a_1 + a_2) u_2^* u_3 - a_2 u_1 u_2 + 2a_1 U_4) = 0,\]

\[-2ia_1 \frac{\partial U_4}{\partial t} + 2ib_1 \frac{\partial U_4}{\partial x} + \frac{\kappa}{a_1} \frac{\partial u_1 u_2}{\partial x} - \frac{\kappa \epsilon}{a_1} \frac{\partial u_2^* u_3}{\partial x} - \frac{\kappa}{a_1} (2\epsilon U_4(|u_1|^2 - |u_3|^2) + (\epsilon u_1^* u_2 - u_3^* u_2)((2a_1 - a_2)|u_1|^2 + (2a_1 + a_2)|u_3|^2)) = 0,\]
Soliton equations with $sl(n)$-series

\[L\psi \equiv i \frac{\partial \psi}{\partial x} + U(x, t, \lambda)\psi = 0, \]
\[M\psi \equiv i \frac{\partial \psi}{\partial t} + V(x, t, \lambda)\psi = \psi C(\lambda), \]

For the case of \mathbb{Z}_N-reduction (Mikhailov (1981)):

\[C_1 U(x, t, \lambda)C_1^{-1} = U(x, t, \omega \lambda), \quad C_1 V(x, t, \lambda)C_1^{-1} = V(x, t, \omega \lambda), \]

where $C_1^N = 1$ is a Coxeter automorphism of the algebra $\mathfrak{sl}(N, \mathbb{C})$ and $\omega = \exp(2\pi i/N)$.

Let $\mathfrak{g} \simeq \mathfrak{sl}(N, \mathbb{C})$ and the group of reduction is \mathbb{Z}_N. The class of relevant NLEE may be considered as generalizations of the derivative NLS equations

\[i \frac{\partial \psi_k}{\partial t} + \gamma \frac{\partial}{\partial x} \left(\cot \left(\frac{\pi k}{N} \right) \cdot \psi_k, x + i \sum_{p=1}^{N-1} \psi_p \psi_{k-p} \right) = 0, \]
\(k = 1, 2, \ldots, N - 1 \), where \(\gamma \) is a constant and the index \(k - p \) should be understood modulus \(N \) and \(\psi_0 = \psi_N = 0 \).

The automorphism \(\text{Ad}_{C_1} (\text{Ad}_{C_1}(Y)) \equiv C_1 Y C_1^{-1} \) for every \(Y \) from \(\mathfrak{g} \) defines a grading in the Lie algebra

\[
\mathfrak{sl}(N, \mathbb{C}) = \bigoplus_{k=0}^{N-1} \mathfrak{g}^{(k)},
\]

\[
J^{(k)} = \sum_{j=1}^{N} \omega^{kj} E_{j, j+s}, \quad C^{-1} J^{(k)} C = \omega^{-k} J^{(k)}.
\]

where \((E_{j,s})_{q,r} = \delta_{jq}\delta_{sr}\). Obviously

\[
\left[J^{(k)}, J^{(m)}_l \right] = (\omega^{ms} - \omega^{kl}) J^{(k+m)}_{s+l}.
\]

Next choose \(U(x, t, \lambda) \) and \(V(x, t, \lambda) \) as follows:

\[
U(x, t, \lambda) = Q(x, t) - \lambda J, \quad Q(x, t) = \sum_{j=1}^{N-1} \psi_j(x, t) J^{(0)}_j, \quad J = aJ^{(1)}_0
\]
\[V(x, t, \lambda) = V_3(x, t) + \lambda V_2(x, t) + \lambda^2 V_1(x, t) - \lambda^3 K, \]

where
\[
V_1(x, t) = \sum_{k=1}^{N} v_1^k(x, t) J_k^{(2)} , \quad V_2(x, t) = \sum_{l=1}^{N} v_2^l(x, t) J_l^{(1)} ,
\]
\[
V_3(x, t) = \sum_{j=1}^{N-1} v_3^j(x, t) J_j^{(0)} , \quad K = bJ_0^{(3)} .
\]

The constants \(a \) and \(b \) determine the dispersion law of the MKdV eqs.

The next step is to request that \([L, M] = 0\) identically with respect to \(\lambda \).

\[
v_1^1(x, t) = \frac{b}{a} (\omega^{2k} + \omega^k + 1) \psi_k , \quad k = 1, \ldots, N - 1 ,
\]
and $v^1_N = C(t)$ with $C(t)$ - arbitrary function of time. For

$$v^2_l(x, t) = \frac{b}{a^2} \sum_{j+k=l}^{N-1} \frac{\omega^{2l} + \omega^{2j+k} - \omega^k - 1}{1 - \omega^l} \psi_j \psi_k$$

$$+ i \frac{b}{a^2} \left(\frac{\omega^{2l} + \omega^l + 1}{1 - \omega^l} \right) \frac{\partial \psi_l}{\partial x} - \frac{C}{a} (\omega^l + 1) \psi_l,$$

for $l = 1, \ldots, N - 1$ and

$$v^2_N = -\frac{b}{a^2} \sum_{j+l=0}^{N-1} \left(\cos \frac{2\pi j}{N} + \frac{1}{2} \right) \psi_j \psi_l + D(t),$$

with $D(t)$ - another arbitrary function of time. And for

$$v^3_j = \frac{b}{a^3} \cot \left(\frac{\pi j}{N} \right) \sum_{k+l=j}^{N-1} \frac{\partial}{\partial x} (\psi_k \psi_l) + \frac{C}{a^2} \sum_{m+l=j}^{N-1} (\psi_m \psi_l)$$

$$+ \frac{b}{2a^3} \sum_{k+l=j}^{N-1} \frac{\cos \frac{\pi (k-l)}{N}}{\sin \frac{\pi j}{N}} \frac{\partial}{\partial x} (\psi_k \psi_l) - \frac{D}{a} \psi_j$$
\[
\begin{align*}
+ \frac{b}{a^3} & \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} (\psi_i \psi_k \psi_m) + \frac{3b}{2a^3} \sum_{l+m=j}^{N-1} \cot \left(\frac{\pi l}{N} \right) \frac{\partial \psi_l}{\partial x} \psi_m \\
+ \frac{b}{a^3} & \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\sin \frac{\pi (j-2k)}{N} - \sin \frac{\pi (j-2m)}{N}}{\sin \frac{\pi j}{N}} (\psi_i \psi_k \psi_m) \\
- \frac{b}{4a^3} & \cot \left(\frac{\pi j}{N} \right) \sum_{l+m=j}^{N-1} \frac{\partial}{\partial x} (\psi_l \psi_m) + \frac{C}{a^2} \cot \left(\frac{\pi j}{N} \right) \frac{\partial \psi_j}{\partial x} \\
- \frac{b}{2a^3} & \sum_{l+m=j}^{N-1} \frac{\cos \frac{\pi (l-m)}{N}}{\sin \frac{\pi j}{N}} \frac{\partial}{\partial x} (\psi_l \psi_m) + \frac{b}{a^3} \left(\cot^2 \frac{\pi j}{N} - \frac{1}{4 \sin^2 \frac{\pi j}{N}} \right) \frac{\partial^2 \psi_j}{\partial x^2} \\
+ \frac{b}{a^3} & \sum_{k=1}^{N-1} \left(\cos \frac{2\pi k}{N} + \frac{1}{2} \right) (\psi_k \psi_{N-k} \psi_j)
\end{align*}
\]

where \(j \) is running from 1 to \(N-1 \). We choose \(C(t) = 0 \) and \(D(t) = 0 \).
In the end we get the following system of mKdV equations:

\[
\alpha \frac{\partial \psi_j}{\partial t} = \left(\cot^2 \frac{\pi j}{N} - \frac{1}{4 \sin^2 \frac{\pi j}{N}} \right) \frac{\partial^3 \psi_j}{\partial x^3} + \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\partial}{\partial x} (\psi_i \psi_k \psi_m)
\]

\[
+ \sum_{l+m=j}^{N-1} \sum_{i+k=l}^{N-1} \frac{\sin \left(\frac{\pi (j-2k)}{N} \right) - \sin \left(\frac{\pi (j-2m)}{N} \right)}{\sin \left(\frac{\pi j}{N} \right)} \frac{\partial}{\partial x} (\psi_i \psi_k \psi_m)
\]

\[
+ \sum_{k=1}^{N-1} \left(\cos \frac{2\pi k}{N} + \frac{1}{2} \right) \frac{\partial}{\partial x} (\psi_k \psi_{N-k} \psi_j) + \frac{3}{4} \cot \left(\frac{\pi j}{N} \right) \sum_{k+l=j}^{N-1} \frac{\partial^2}{\partial x^2} (\psi_k \psi_l)
\]

\[
+ \frac{3}{4} \sum_{k+l=j}^{N-1} \frac{\partial}{\partial x} \left(\cot \left(\frac{\pi l}{N} \right) \frac{\partial \psi_l}{\partial x} \psi_k + \cot \left(\frac{\pi k}{N} \right) \frac{\partial \psi_k}{\partial x} \psi_l \right)
\]

where \(\alpha = a^3/b \).
Additional Involutions and Examples

Along with the \(\mathbb{Z}_N \)-reduction we can introduce one of the following involutions (\(\mathbb{Z}_2 \)-reductions):

a) \(K_0^{-1} U^\dagger (x, t, \kappa_1(\lambda)) K_0 = U(x, t, \lambda), \quad \kappa_1(\lambda) = -\omega^{-1} \lambda^* \)

b) \(K_0^{-1} U^* (x, t, \kappa_1(\lambda)) K_0 = -U(x, t, \lambda), \quad \kappa_1(\lambda) = \omega^{-1} \lambda^* \)

c) \(U^T(x, t, -\lambda) = -U(x, t, \lambda), \)

where \(K_0^{-2} = 1 \). We choose

\[
K_0 = \sum_{k=1}^{N} E_{k,N-k+1}.
\]

The action of \(K_0 \) on the basis is as follows:

\[
K_0 \left(J^{(k)} \right)^{\dagger} K_0 = \omega^{k(s-1)} J^{(k)}, \quad K_0 \left(J^{(k)} \right)^* K_0 = \omega^{-k} J^{(k)}_{-s},
\]

from which there follow the reductions below.
An immediate consequences are the constraints on the potentials:

\[K_0^{-1}Q^{\dagger}(x, t)K_0 = Q(x, t), \quad K_0^{-1}(J_0^{(1)})^{\dagger}K_0 = \omega^{-1}J_0^{(1)}, \]
\[K_0^{-1}Q^*(x, t)K_0 = -Q(x, t), \quad K_0^{-1}(J_0^{(1)})^{*}K_0 = \omega^{-1}J_0^{(1)}, \]
\[Q^T(x, t) = -Q(x, t), \quad (J_0^{(1)})^T = J_0^{(1)}. \]

More specifically there follows that each of the algebraic relations below:

a) \[\psi^*_j(x, t) = \psi_j(x, t), \quad \alpha = \alpha^*; \]

b) \[\psi^*_j(x, t) = -\psi_{N-j}(x, t), \quad \alpha = \alpha^*; \]

c) \[\psi_j(x, t) = -\psi_{N-j}(x, t). \]

where \(j = 1, \ldots, N - 1 \), are compatible with the evolution of the MKdV eqs.

Some particular cases

Special examples of DNLS systems.
In the case of \(\mathfrak{sl}(2, \mathbb{C}) \) algebra we obtain the well-known MKdV equation
\[
\alpha \frac{\partial \psi_1}{\partial t} = -\frac{1}{4} \frac{\partial^3 \psi_1}{\partial x^3} - \frac{1}{2} \frac{\partial}{\partial x} (\psi_1^3).
\]

In the case of \(\mathfrak{sl}(3, \mathbb{C}) \) algebra we have the system of trivial equations \(\partial_t \psi_1 = 0 \) and \(\partial_t \psi_2 = 0 \). In the case of \(\mathfrak{sl}(4, \mathbb{C}) \) algebra we find:
\[
\alpha \frac{\partial \psi_1}{\partial t} = \frac{1}{2} \frac{\partial^3 \psi_1}{\partial x^3} + \frac{3}{2} \frac{\partial}{\partial x} \left(\frac{\partial \psi_2}{\partial x} \psi_3 \right) + \frac{3}{2} \frac{\partial}{\partial x} (\psi_1 \psi_2^2) + \frac{\partial}{\partial x} (\psi_3^3),
\]
\[
\alpha \frac{\partial \psi_2}{\partial t} = -\frac{1}{4} \frac{\partial^3 \psi_2}{\partial x^3} + \frac{3}{4} \frac{\partial^2}{\partial x^2} (\psi_1^2) - \frac{3}{4} \frac{\partial^2}{\partial x^2} (\psi_3^2)
+ 3 \frac{\partial}{\partial x} (\psi_1 \psi_2 \psi_3) - \frac{1}{2} \frac{\partial}{\partial x} (\psi_2^3), \quad (1)
\]
\[
\alpha \frac{\partial \psi_3}{\partial t} = \frac{1}{2} \frac{\partial^3 \psi_3}{\partial x^3} - \frac{3}{2} \frac{\partial}{\partial x} \left(\psi_1 \frac{\partial \psi_2}{\partial x} \right) + \frac{3}{2} \frac{\partial}{\partial x} (\psi_2^2 \psi_3) + \frac{\partial}{\partial x} (\psi_1^3).
\]

If we apply case a) we get the same set of MKdV equations with \(\psi_1, \psi_2 \) and \(\psi_3 \) purely real functions.
In the case b) we put $\psi_1 = -\psi_3^* = u$ and $\psi_2 = -\psi_2^* = iv$ and get:

$$\alpha \frac{\partial v}{\partial t} = - \frac{1}{4} \frac{\partial^3 v}{\partial x^3} + \frac{3}{4i} \frac{\partial^2}{\partial x^2} (u^2 - u^{*2}) - 3 \frac{\partial}{\partial x} (|u|^2 v) + \frac{1}{2} \frac{\partial}{\partial x} (v^3),$$

$$\alpha \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^3 u}{\partial x^3} - \frac{3}{2} \frac{\partial}{\partial x} \left(u^* \frac{\partial v}{\partial x} \right) - \frac{3}{2} \frac{\partial}{\partial x} (uv^2) - \frac{\partial}{\partial x} (u^*^3),$$

where u is a complex function, but v is a purely real function.

In the case c):

$$\alpha \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^3 u}{\partial x^3} - \frac{\partial}{\partial x} (u^3),$$

where u is a complex function, we recover the well known MKdV equation. And finally in the case of $\mathfrak{sl}(6, \mathbb{C})$ algebra with \mathbb{D}_6-reduction in the case c) we find

$$\alpha \frac{\partial u}{\partial t} = 2 \frac{\partial^3 u}{\partial x^3} - 2\sqrt{3} \frac{\partial}{\partial x} \left(u \frac{\partial v}{\partial x} \right) - 6 \frac{\partial}{\partial x} (uv^2),$$

$$\alpha \frac{\partial v}{\partial t} = \sqrt{3} \frac{\partial^2}{\partial x^2} (u^2) - 6 \frac{\partial}{\partial x} (u^2 v),$$
where u and v are complex functions.

MKdV and $so(8)$

Normally with each simple Lie algebra one can associate just one MKdV eq.

The only exception is $s0(8)$ which allows a one-parameter family of MKdV equations. The reason is that only $so(8)$ has 3 as a double exponent!

$$
\partial_t q_1 = 2a \left[\partial_x^3 q_1 - \sqrt{3} \partial_x (q_1 \partial_x q_2) \right] - \sqrt{3} \left[(3a + b) \partial_x (q_4 \partial_x q_3) + (3a - b) \partial_x (q_3 \partial_x q_4) \right] \\
- 3 \partial_x \left[q_1 \left(2aq_2^2 + (a - b)q_3^2 + (a + b)q_4^2 \right) \right],
$$
\[\partial_t q_2 = \sqrt{3} a \partial_x^2 q_1^2 + \frac{\sqrt{3}}{2} (a + b) \partial_x^2 q_3^2 + \frac{\sqrt{3}}{2} (a - b) \partial_x^2 q_4^2 \\
- 3 \partial_x \left[q_2 \left(2a q_1^2 + (a + b) q_3^2 + (a - b) q_4^2 \right) \right], \]

\[\partial_t q_3 = -(a + b) \left[\partial_x^3 q_3 - \sqrt{3} \partial_x (q_3 \partial_x q_2) \right] - \sqrt{3} \left[(3a + b) \partial_x (q_4 \partial_x q_1) + 2b \partial_x (q_1 \partial_x q_4) \right] \\
+ 3 \partial_x \left[q_3 \left(2a q_4^2 + (a - b) q_1^2 + (a + b) q_2^2 \right) \right], \]

\[\partial_t q_4 = -(a - b) \left[\partial_x^3 q_4 - \sqrt{3} \partial_x (q_4 \partial_x q_2) \right] - \sqrt{3} \left[(3a - b) \partial_x (q_3 \partial_x q_1) - 2b \partial_x (q_1 \partial_x q_3) \right] \\
+ 3 \partial_x \left[q_4 \left(2a q_3^2 + (a - b) q_2^2 + (a + b) q_1^2 \right) \right]. \]
Conclusions and open questions

- More classes of new integrable equations: i) higher rank simple Lie algebras; ii) different types of grading; iii) different power k of the polynomials $U(x, t, \lambda)$ and $V(x, t, \lambda)$ and iv) different reductions of U and V.

- These new NLEE must be Hamiltonian. View the jets $U(x, t, \lambda)$ and $V(x, t, \lambda)$ as elements of co-adjoint orbits of some Kac-Moody algebra.

- Apply Zakharov-Shabat dressing method for constructing their N-soliton solutions and study their interactions.

- Apply the above methods to twisted Kac-Moody algebras – work in progress
Thank you for your attention!