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Plan of the talk:

• Meridian surfaces with constant mean curvature .

• Marginally trapped meridian surfaces .

• Chen meridian surfaces .

• Meridian surfaces with parallel normalized mean curvature vector field .

• Meridian surfaces with pointwise 1-type Gauss map.
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The talk is based on the following papers:

[1] Ganchev, G., Milousheva, V., An invariant theory of marginally trapped surfaces in

the four-dimensional Minkowski space, J. Math. Phys. 53 (2012), Article ID: 033705, 15

pp.

[2] Ganchev, G., Milousheva, V., Marginally trapped meridian surfaces of parabolic type

in the four-dimensional Minkowski space, Int. J. Geom. Methods Mod. Phys. 10, no. 10

(2013), Article ID: 1350060, 17 pp.

[3] Ganchev, G., Milousheva, V., Meridian surfaces of elliptic or hyperbolic type in the

four-dimensional Minkowski space. (submitted)

[4] Ganchev, G., Milousheva, V., Meridian surfaces of parabolic type in the four-dimensional

Minkowski space. (submitted)

[5] Arslan, K., Milousheva, V., Meridian surfaces of elliptic or hyperbolic type with

pointwise 1-type Gauss map in Minkowski 4-Space. (submitted)
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1. Meridian surfaces in R4
1

Meridian surfaces of elliptic type:

Let Oe1e2e3e4 be a fixed orthonormal coordinate system in R4
1, i.e.

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e4, e4〉 = −1.

Let f = f(u), g = g(u) be smooth functions, defined in an interval I ⊂ R, such that

f ′2(u)− g′2(u) > 0, u ∈ I.

The standard rotational hypersurface M′, obtained by the rotation of the meridian

curve m : u → (f(u), g(u)) about the Oe4-axis, is:

Z(u, w1, w2) = f(u) cos w1 cos w2e1 + f(u) cos w1 sin w2e2 + f(u) sin w1e3 + g(u)e4.

M′ is a rotational hypersurface with timelike axis.

Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R. We consider the two-dimensional surface

M′
m lying on M′, constructed in the following way:

M′
m : z(u, v) = Z(u, w1(v), w2(v)), u ∈ I, v ∈ J.

M′
m is a one-parameter system of meridians of M′. That is why we call M′

m a meridian

surface of elliptic type.
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If we denote l(w1, w2) = cos w1 cos w2 e1 + cos w1 sin w2 e2 + sin w1 e3, then

M′
m : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J.

l(w1, w2) is the unit position vector of the 2-dimensional sphere S2(1) lying in the Euclidean

space R3 = span{e1, e2, e3} and centered at the origin O; c : l = l(v) = l(w1(v), w2(v)), v ∈
J, J ⊂ R is a smooth curve on S2(1).

So, we can say that each meridian surface of elliptic type is determined by a meridian

curve m of a rotational hypersurface with timelike axis and a smooth curve c lying on the

unit 2-dimensional sphere S2(1).

All invariants of the meridian surface of elliptic type M′
m are expressed by the curvature

κm(u) of the meridian curve m and the spherical curvature κ(v) of the curve c on S2(1).

The Gauss curvature and the curvature of the normal connection are:

K = −f ′′(u)

f(u)
; κ = 0.
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The mean curvature vector field is:

H =
κ

2f
n1 +

ff ′′ + f ′2 − 1

2f
√

f ′2 − 1
n2

The length of the mean curvature vector field is:

||H|| =

√
ε(κ2(ḟ 2 − 1)− (ff̈ + ḟ 2 − 1)2)

4f 2(ḟ 2 − 1)
.
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Meridian surfaces of hyperbolic type:

Let f = f(u), g = g(u) be smooth functions, such that f ′2(u) + g′2(u) > 0. The

rotational hypersurface M′′ in R4
1, obtained by the rotation of the meridian curve m : u →

(f(u), g(u)) about the Oe1-axis is:

Z(u, w1, w2) = g(u)e1 + f(u) cosh w1 cos w2e2 + f(u) cosh w1 sin w2e3 + f(u) sinh w1e4.

M′′ is a rotational hypersurface with spacelike axis.

Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R. We consider the surface:

M′′
m : z(u, v) = Z(u, w1(v), w2(v)), u ∈ I, v ∈ J.

M′′
m is a one-parameter system of meridians of M′′. We call M′′

m a meridian surfaces

of hyperbolic type.

If we denote l(w1, w2) = cosh w1 cos w2 e2 + cosh w1 sin w2 e3 + sinh w1 e4, then

M′′
m : z(u, v) = f(u) l(v) + g(u) e1, u ∈ I, v ∈ J,

l(w1, w2) being the unit position vector of the timelike sphere S2
1(1) in the Minkowski space

R3
1 = span{e2, e3, e4}, i.e. S2

1(1) = {V ∈ R3
1 : 〈V, V 〉 = 1}. S2

1(1) is a timelike surface in R3
1

known also as the de Sitter space.
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Meridian surfaces of parabolic type:

Instead of the standard orthonormal frame {e1, e2, e3, e4}, we consider the pseudo-

orthonormal base {e1, e2, ξ1, ξ2}, where ξ1 =
e3 + e4√

2
, ξ2 =

−e3 + e4√
2

.

A rotational hypersurface with lightlike axis in R4
1:

M′′′ : Z(u, w1, w2) = f(u)w1 cos w2e1 +f(u)w1 sin w2e2 +

(
f(u)

(w1)2

2
+ g(u)

)
ξ1 +f(u) ξ2,

where f = f(u), g = g(u) are smooth functions, such that −f ′(u)g′(u) > 0, f(u) > 0.

Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R. We consider the surface:

M′′′
m : z(u, v) = Z(u, w1(v), w2(v)). (1)

M′′′
m - a meridian surface of parabolic type.

Each meridian surface of parabolic type is determined by a meridian curve of a rotational

hypersurface with lightlike axis and a curve c lying on the paraboloid P2, defined by

P2 : l(w1, w2) = w1 cos w2 e1 + w1 sin w2 e2 +
(w1)2

2
ξ1 + ξ2.

Indeed, we can rewrite (1) as

M′′′
m : z(u, v) = f(u) l(v) + g(u) ξ1, u ∈ I, v ∈ J. (2)
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2. Meridian surfaces with constant mean curvature

Constant mean curvature surfaces in arbitrary spacetime are important objects for their

special role in the theory of general relativity. The study of constant mean curvature

surfaces (CMC surfaces) involves not only geometric methods but also PDE and com-

plex analysis, that is why the theory of CMC surfaces is of great interest not only for

mathematicians but also for physicists and engineers. CMC surfaces in Minkowski space

have been studied intensively in the last years, for example by R. López, J. Pastor, R.

Souam, S. Montiel, N. Sasahara, H. Liu, G. Liu, D. Brander, R. Chaves, C.

Cândido, J. Hano, K. Nomizu, etc.

For meridian surfaces of elliptic type:

||H|| = a = const (a 6= 0) if and only if (ff ′′ + f ′2 − 1)2 = (f 2 − 1)(b2 − 4a2f 2).

Theorem 2.1. (i) M′
m has constant mean curvature ||H|| = a = const, a 6= 0 if and only

if the curve c on S2(1) has constant spherical curvature κ = const = b, b 6= 0, and the

meridian m is determined by f ′ = y(f) where

y(t) =

√
1 +

1

t2

(
C ± t

2

√
b2 − 4a2t2 ± b2

4a
arcsin

2at

b

)2

, C = const,

g(u) is defined by g′(u) =
√

f ′2(u)− 1.
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(ii) M′′
m has constant mean curvature ||H|| = a = const, a 6= 0 if and only if the curve

c on S2
1(1) has constant spherical curvature κ = const = b, b 6= 0, and the meridian m is

determined by f ′ = y(f) where

y(t) =

√
1− 1

t2

(
C ± t

2

√
b2 − 4a2t2 ± b2

4a
arcsin

2at

b

)2

, C = const,

g(u) is defined by g′(u) =
√

1− f ′2(u).

(iii) M′′′
m has constant mean curvature ||H|| = a = const, a 6= 0 if and only if κ =

const = b, b 6= 0, and the meridian m is determined by f ′ = y(f), where

y(t) =
1

t

(
C ± t

2

√
b2 − 4a2t2 ± b2

4a
arcsin

2at

b

)
, if 〈H, H〉 > 0,

y(t) =
1

t

(
C ± t

2

√
b2 + 4a2t2 ± b2

4a
ln |2at +

√
b2 + 4a2t2|

)
, if 〈H, H〉 < 0,

g(u) is defined by g′(u) = − 1

2f ′(u)
.
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3. Marginally trapped meridian surfaces

The concept of trapped surfaces was introduced by Roger Penrose [Phys. Rev. Lett.,

1965] and plays an important role in general relativity. A surface in a 4-dimensional

spacetime is called marginally trapped or quasi-minimal it its mean curvature vector

H is lightlike at each point.

Marginally trapped surfaces satisfying some extra conditions on the mean curvature

vector, the Gauss curvature or the second fundamental form have been intensively studied

in the last few years. For example, marginally trapped surfaces with positive relative

nullity were classified by B.-Y. Chen and J. Van der Veken in [Class. Quantum

Grav., 2007] and [J. Math. Phys., 2007]. The classification of marginally trapped surfaces

with parallel mean curvature vector in Lorenz space forms is given by B.-Y. Chen and

J. Van der Veken in [Houston J. Math., 2010].

Marginally trapped surfaces in Minkowski 4-space which are invariant under spacelike

rotations, under boost transformations, and under screw rotations were classified by S.

Haesen and M. Ortega in [Gen. Relativ. Grav., 2009], [Class. Quantum Grav., 2007],

and [J. Math. Anal. Appl., 2009], respectively.

Marginally trapped surfaces with pointwise 1-type Gauss map were classified by V.

Milousheva in [Int. J. Geom., 2013] and N. C. Turgay in [Gen. Relativ. Grav., 2014].
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In [J. Math. Phys., 2012] and [J. Geom. Methods Mod. Phys., 2013] we described all

marginally trapped meridian surfaces.

Theorem 3.1. (i) M′
m is marginally trapped if and only if κ = a, a 6= 0, and the meridian

curve m is defined by

f(u) = u;

g(u) =
±a

a2 + 1

√
(±au + c)2 + u2

+
c

(a2 + 1)
3
2

ln

(√
a2 + 1 u± ac√

a2 + 1
+
√

(±au + c)2 + u2

)
+ b,

where b and c are constants, c 6= 0.

(ii) M′′
m is marginally trapped if and only if κ = a, a 6= 0, and the meridian curve m is

defined by

f(u) = u;

g(u) =
±a

1− a2

√
u2 − (±au + c)2

+
c

(1− a2)
3
2

ln

(√
1− a2 u∓ ac√

1− a2
+
√

u2 − (±au + c)2

)
+ b,

where b and c are constants, c 6= 0.



Home Page

Title Page

Contents

JJ II

J I

Page 13 of 29

Go Back

Full Screen

Close

Quit

(iii) M′′′
m is marginally trapped if and only if κ(v) = a = const, a 6= 0, and the meridian

curve is defined by

f(u) = u;

g(u) =
±1

2a3

(
a2u2 ∓ 2auc

c∓ au
− 2c ln |c∓ au|+ b

)
,

where b and c are constants, c 6= 0.

Remark: As far as we know, all examples of marginally trapped surfaces known till now in

the literature are surfaces with parallel mean curvature vector field. The first examples of

marginally trapped surfaces with non-parallel mean curvature vector field are the meridian

surfaces.



Home Page

Title Page

Contents

JJ II

J I

Page 14 of 29

Go Back

Full Screen

Close

Quit

4. Chen meridian surfaces

The allied vector field of a normal vector field ξ of an n-dimensional submanifold Mn

of (n + m)-dimensional Riemannian manifold M̃n+m is defined by B.-Y. Chen by the

formula

a(ξ) =
‖ξ‖
n

m∑
k=2

{tr(A1 ◦ Ak)}ξk,

where {ξ1 =
ξ

‖ξ‖
, ξ2, . . . , ξm} is a local orthonormal frame of the normal bundle of Mn, and

Ai = Aξi
, i = 1, . . . ,m is the shape operator with respect to ξi. In particular, the allied

vector field a(H) of the mean curvature vector field H is called the allied mean curvature

vector field of Mn.

B.-Y. Chen defined the A-submanifolds to be those submanifolds of M̃n+m for which

a(H) vanishes identically. The A-submanifolds are also called Chen submanifolds. It is

easy to see that minimal submanifolds, pseudo-umbilical submanifolds and hypersurfaces

are Chen submanifolds. These Chen submanifolds are said to be trivial A-submanifolds.

The notion of allied mean curvature vector field is extended by S. Haesen and M.

Ortega [J. Math. Anal. Appl., 2009] to the case when the normal space is a two-

dimensional Lorenz space and the mean curvature vector field is lightlike.
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In the following theorem we classify all non-trivial Chen meridian surfaces.

Theorem 4.1. (i) M′
m is a Chen surface if and only if κ = const = b, b 6= 0, and the

meridian m is determined by f ′ = y(f) where

y(t) =
±1

2 t±1

√
4 t±2 − a

(
t±2 − b2

a

)2

, a = const 6= 0,

g(u) is defined by g′(u) =
√

f ′2(u)− 1.

(ii) M′′
m is a Chen surface if and only if κ = const = b, b 6= 0, and the meridian m is

determined by f ′ = y(f) where

y(t) =
±1

2 t±1

√
4 t±2 + a

(
t±2 − b2

a

)2

, a = const 6= 0,

g(u) is defined by g′(u) =
√

1− f ′2(u).

(iii) M′′′
m is a Chen surface if and only if κ = const = b, b 6= 0, and the meridian m is

determined by f ′ = y(f) where

y(t) =
1

2c t±1

(
c2t±2 + b2) , c = const 6= 0,

g(u) is defined by g′(u) = − 1

2f ′(u)
.
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5. Meridian surfaces with parallel normalized mean curvature vector field

A normal vector field ξ is said to be parallel in the normal bundle (or simply parallel),

if Dxξ = 0 holds identically for any tangent vector field x. A surface M is said to have

parallel normalized mean curvature vector field if the mean curvature vector H is non-zero

and the unit vector in the direction of the mean curvature vector is parallel in the normal

bundle [ B.-Y. Chen, Monatsh. Math., 1980]. Note that if M is a surface with non-zero

parallel mean curvature vector field, then M is a surface with parallel normalized mean

curvature vector field, but the converse is true only in the case ‖H‖ = const.

It is known that every surface in the Euclidean 3-space has parallel normalized mean

curvature vector field but in the 4-dimensional Euclidean space, there exist abundant

examples of surfaces which lie fully in E4 with parallel normalized mean curvature vector

field, but not with parallel mean curvature vector field.

In pseudo-Euclidean spaces there are very few results on surfaces with parallel normal-

ized mean curvature vector field. In [J. Math. Phys. Anal. Geom., 2011] S. Shu studied

spacelike submanifolds with parallel normalized mean curvature vector field in the de Sit-

ter space. He showed that compact spacelike submanifolds whose mean curvature does

not vanish and whose corresponding normalized vector field is parallel, must be, under

some suitable geometric assumptions, totally umbilical.
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In the next theorem we describe the meridian surfaces of elliptic type with parallel

normalized mean curvature vector field.

Theorem 5.1. M′
m has parallel normalized mean curvature vector field if and only if one

of the following cases holds:

(a) the meridian m is defined by

f(u) = ±
√

u2 + 2cu + d;

g(u) = ±
√

c2 − d ln |u + c +
√

u2 + 2cu + d|+ a,

where a, c, and d are constants, c2 > d;

(b) κ = const = b, b 6= 0, and the meridian m is determined by f ′ = y(f) where

y(t) = ±
√

(a2 + 1) t2 + 2ac t + c2

t
, a = const 6= 0, c = const,

g(u) is defined by g′(u) =
√

f ′2(u)− 1.

Similar results hold for meridian surfaces of hyperbolic or parabolic type.
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6. Meridian surfaces with pointwise 1-type Gauss map

A submanifold M of the Euclidean space Em (or pseudo-Euclidean space Em
s ) is said to

have pointwise 1-type Gauss map if its Gauss map G satisfies

∆G = λ(G + C)

for some non-zero smooth function λ on M and some constant vector C.

Classification results on surfaces with pointwise 1-type Gauss map in Minkowski space

have been obtained in the last few years. For example, the classification of ruled surfaces

with pointwise 1-type Gauss map of first kind in Minkowski space E3
1 is given by Y. Kim

and D. Yoon in [J. Geom. Phys., 2000]. Ruled surfaces with pointwise 1-type Gauss map

of second kind in Minkowski 3-space were classified by M. Choi, Y. H. Kim, and D. W.

Yoon in [Taiwanese J. Math., 2011]. In [Rocky Mountain J. Math., 2005] Y. Kim and

D. Yoon studied ruled surfaces with 1-type Gauss map in Minkowski space Em
1 and gave

a complete classification of null scrolls with 1-type Gauss map.

The complete classification of flat rotation surfaces with pointwise 1-type Gauss map

in the 4-dimensional pseudo-Euclidean space E4
2 is given in [Y. Kim and D. Yoon, J.

Korean Math. Soc., 2004].
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7.1. Meridian surfaces with harmonic Gauss map.

The classification of the meridian surfaces of elliptic or hyperbolic type with harmonic

Gauss map is given in the next two theorems.

Theorem 6.1 (K. Arslan, V. M.). Let M′
m be a meridian surface of elliptic type. The

Gauss map of M′
m is harmonic if and only if M′

m is part of a plane.

Theorem 6.2 (K. Arslan, V. M.). Let M′′
m be a meridian surface of hyperbolic type. The

Gauss map of M′′
m is harmonic if and only if one of the following cases holds:

(i) M′′
m is part of a plane;

(ii) the curve c has spherical curvature κ = ±1 and the meridian curve m is determined

by f(u) = a; g(u) = ±u+ b, where a = const, b = const. In this case M′′
m is a marginally

trapped developable ruled surface in E4
1.

Remark: In the Euclidean space E4 planes are the only surfaces with harmonic Gauss

map. However, in the Minkowski space E4
1 there are surfaces with harmonic Gauss map

which are not planes. Theorem 6.1 and Theorem 6.2 show that in the class of the meridian

surfaces of elliptic type there are no surfaces with harmonic Gauss map other than planes,

while in the class of the meridian surfaces of hyperbolic type there exist surfaces with

harmonic Gauss map, which are not planes.
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7.2. Meridian surfaces with pointwise 1-type Gauss map of first kind

The classification of the meridian surfaces of elliptic or hyperbolic type with pointwise

1-type Gauss map of first kind, i.e.

∆G = λG

for some non-zero smooth function λ, is given in the following theorems:

Theorem 6.3 (K. Arslan, V. M.). Let M′
m be a meridian surface of elliptic type. Then

M′
m has pointwise 1-type Gauss map of first kind if and only if the curve c has zero

spherical curvature and the meridian curve m is determined by a solution f(u) of the

following differential equation

f

(
ff ′′√
f ′2 − 1

)′

− f ′
√

f ′2 − 1 = 0,

g(u) is defined by g′(u) =
√

f ′2(u)− 1.
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Theorem 6.4 (K. Arslan, V. M.). Let M′′
m be a meridian surface of hyperbolic type. Then

M′′
m has pointwise 1-type Gauss map of first kind if and only if one of the following cases

holds:

(i) the curve c has zero spherical curvature and the meridian curve m is determined by

a solution f(u) of the following differential equation

f

(
ff ′′√
1− f ′2

)′

+ f ′
√

1− f ′2 = 0,

g(u) is defined by g′(u) =
√

1− f ′2(u);

(ii) the curve c has non-zero constant spherical curvature k (κ 6= ±1) and the meridian

curve m is determined by f(u) = a; g(u) = ±u+b, where a = const, b = const. Moreover,

M′′
m is a developable ruled surface lying in a constant hyperplane E3

1 (if κ2 − 1 > 0) or E3

(if κ2 − 1 < 0) of E4
1.
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7.3. Meridian surfaces with pointwise 1-type Gauss map of second kind

The classification of the meridian surfaces of elliptic type with pointwise 1-type Gauss

map of second kind, i.e.

∆G = λ(G + C)

for some non-zero smooth function λ and a constant vector C 6= 0, is given in

Theorem 6.5 (K. Arslan, V. M.). Let M′
m be a meridian surface of elliptic type. Then

M′
m has pointwise 1-type Gauss map of second kind if and only if one of the following

cases holds:

(i) the curve c has non-zero constant spherical curvature κ and the meridian curve m

is determined by f(u) = ±u + a; g(u) = b, where a = const, b = const. In this case M′
m

is a developable ruled surface lying in a constant hyperplane E3 of E4
1.

(ii) the curve c has constant spherical curvature κ and the meridian curve m is deter-

mined by f(u) = au + a1; g(u) = bu + b1, where a, a1, b and b1 are constants, a2 ≥ 1,

a2 − b2 = 1. In this case M′
m is either a marginally trapped developable ruled surface (if

κ2 = b2) or a developable ruled surface lying in a constant hyperplane E3 (if κ2 − b2 > 0)

or E3
1 (if κ2 − b2 < 0) of E4

1.
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(iii) the curve c has zero spherical curvature and the meridian curve m is determined

by the solutions of the following differential equation(
ln

√
f ′2 − 1

(
f(f ′2 − 1)(ff ′′)′ − f 2f ′f ′′2 − f ′(f ′2 − 1)2

)
(f ′2 − 1)2 + f 2f ′′2 − ff ′(f ′2 − 1)(ff ′′)′

)′

=
f ′f ′′

f ′2 − 1
.

g(u) is defined by g′(u) =
√

f ′2(u)− 1.

A similar result holds for meridian surfaces of hyperbolic type with pointwise 1-type

Gauss map of second kind.

Similarly to the elliptic and hyperbolic type one can classify the meridian surfaces of

parabolic type with pointwise 1-type Gauss map.
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