f-Biminimal Immersions

Fatma GÜRLER and Cihan ÖZGÜR

Department of Mathematics
Balikesir University, TURKEY

fatmagurlerr@gmail.com, cozgur@balikesir.edu.tr
Introduction and Preliminaries

Let \((M, g)\) and \((N, h)\) be Riemannian manifolds. A map \(\varphi : (M, g) \rightarrow (N, h)\) is called a harmonic map if it is a critical point of the energy functional

\[
E(\varphi) = \frac{1}{2} \int_M \|d\varphi\|^2 \, d\nu_g.
\]
Introduction and Preliminaries

Let \((M, g)\) and \((N, h)\) be Riemannian manifolds. A map \(\varphi : (M, g) \rightarrow (N, h)\) is called a harmonic map if it is a critical point of the energy functional

\[
E(\varphi) = \frac{1}{2} \int_M \|d\varphi\|^2 \, d\nu_g.
\]

The map \(\varphi\) is said to be biharmonic if it is a critical point of the bienergy functional

\[
E_2(\varphi) = \frac{1}{2} \int_M \|\tau(\varphi)\|^2 \, d\nu_g,
\]

where \(\tau(\varphi) = tr(\nabla d\varphi)\) is the tension field. If \(\tau(\varphi) = 0\) then \(\varphi\) is called harmonic [Eells-Sampson].
The Euler-Lagrange equation for the bienergy functional were obtained by Jiang in [Jiang-86] by $\tau_2(\varphi) = 0$, where

$$\tau_2(\varphi) = tr(\nabla^N \nabla^N - \nabla^N_{\nabla})\tau(\varphi) - tr(R^N(d\varphi, \tau(\varphi))d\varphi),$$

is the bitension field of φ and R^N is the curvature tensor of N.
The Euler-Lagrange equation for the bienergy functional were obtained by Jiang in [Jiang-86] by \(\tau_2(\varphi) = 0 \), where

\[
\tau_2(\varphi) = tr(\nabla^N \nabla^N - \nabla^N_N)\tau(\varphi) - tr(R^N(d\varphi, \tau(\varphi))d\varphi), \tag{1}
\]

is the bitension field of \(\varphi \) and \(R^N \) is the curvature tensor of \(N \).

An \textit{f-harmonic map} with a positive function \(f: M \xrightarrow{C^\infty} \mathbb{R} \) is a critical point of \(f \)-energy function

\[
E_f(\varphi) = \frac{1}{2} \int_M f \|d\varphi\|^2 d\nu_g.
\]
The Euler-Lagrange equation for the bienergy functional were obtained by Jiang in [Jiang-86] by $\tau_2(\varphi) = 0$, where

$$\tau_2(\varphi) = tr(\nabla^N \nabla^N - \nabla^N_N)\tau(\varphi) - tr(R^N(d\varphi, \tau(\varphi))d\varphi), \quad (1)$$

is the bitension field of φ and R^N is the curvature tensor of N. An f-harmonic map with a positive function $f : M \to \mathbb{R}$ is a critical point of f-energy function

$$E_f(\varphi) = \frac{1}{2} \int_M f \|d\varphi\|^2 \, d\nu_g.$$

Using the Euler-Lagrange equation for the f-energy functional, in [OND] and [Course] the f-tension field $\tau_f(\varphi)$ was obtained by

$$\tau_f(\varphi) = f\tau(\varphi) + d\varphi(\text{grad}f). \quad (2)$$
If $\tau_f(\varphi) = 0$ then the map is called f-harmonic [Course]. The map φ is said to be f-biharmonic (see [Lu]) if and only if it is a critical point of the f-bienergy functional

$$E_{2,f}(\varphi) = \frac{1}{2} \int_M f \|\tau(\varphi)\|^2 \, d\nu_g.$$
If $\tau_f(\varphi) = 0$ then the map is called f-harmonic [Course]. The map φ is said to be f-biharmonic (see [Lu]) if and only if it is a critical point of the f-bienergy functional

$$E_{2,f}(\varphi) = \frac{1}{2} \int_M f \|\tau(\varphi)\|^2 \, d\nu_g.$$

The Euler-Lagrange equation for the f-bienergy functional is given by $\tau_{2,f}(\varphi) = 0$, where $\tau_{2,f}(\varphi)$ is the f-bitension field and is defined by

$$\tau_{2,f}(\varphi) = f \tau_2(\varphi) + \Delta f \tau(\varphi) + 2\nabla_{\text{grad} f} \tau(\varphi), \quad (3)$$

(see [Lu]). It can be easily seen that any f-harmonic map is f-biharmonic. If the map is non-f-harmonic f-biharmonic then we call it by proper f-biharmonic [Lu].
In [Loubeau-Montaldo], Loubeau and Montaldo considered biminimal immersions. They studied biminimal curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a Riemannian manifold. They investigated biminimal surfaces using Riemannian and horizontally homothetic submersions.
In [Loubeau-Montaldo], Loubeau and Montaldo considered biminimal immersions. They studied biminimal curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a Riemannian manifold. They investigated biminimal surfaces using Riemannian and horizontally homothetic submersions.

An immersion \(\varphi \), is called \emph{biminimal} (see [Loubeau-Montaldo]) if it is a critical point of the bienergy functional \(E_2(\varphi) \) for variations normal to the image \(\varphi(M) \subset N \), with fixed energy. Equivalently, there exists a constant \(\lambda \in \mathbb{R} \) such that \(\varphi \) is a critical point of the \(\lambda \)-bienergy

\[
E_{2,\lambda}(\varphi) = E_2(\varphi) + \lambda E(\varphi)
\]

for any smooth variation of the map \(\varphi_t :]-\epsilon, +\epsilon[\to \varphi_0 = \varphi \), such that \(V = \frac{d\varphi_t}{dt} \big|_{t=0} = 0 \) is normal to \(\varphi(M) \).
The Euler-Lagrange equation for \(\lambda \)-biminimal immersion is,

\[
[\tau_2, \lambda(\varphi)]^\perp = [\tau_2(\varphi)]^\perp - \lambda[\tau(\varphi)]^\perp = 0.
\]

(5)

for some value of \(\lambda \in \mathbb{R} \), where \([\cdot]^\perp\) denotes the normal component of \([\cdot]\). An immersion is called free biminimal if it is biminimal for \(\lambda = 0 \) [Loubeau-Montaldo].
The Euler-Lagrange equation for λ-biminimal immersion is,

$$[\tau_{2,\lambda}(\varphi)]^\perp = [\tau_2(\varphi)]^\perp - \lambda[\tau(\varphi)]^\perp = 0.$$ \hspace{1cm} (5)

for some value of $\lambda \in \mathbb{R}$, where $[\cdot]^\perp$ denotes the normal component of $[\cdot]$. An immersion is called free biminimal if it is biminimal for $\lambda = 0$ [Loubeau-Montaldo].

In this study, we define f-biminimal immersions. We consider f-biminimal curves in a Riemannian manifold. We also consider f-biminimal submanifolds of codimension 1 in a Riemannian manifold. We give a non-trivial example for an f-biminimal Legendre curve in a Sasakian space form and we investigate the Riemannian and horizontally homothetic submersions for proper f-biminimal surface in a three dimension Riemannian manifold.
Now, we give the following definition:
Now, we give the following definition:

Definition 1

An immersion φ, is called *f-biminimal* if it is a critical point of the f-bienergy functional $E_{2,f}(\varphi)$ for variations normal to the image $\varphi(M) \subset N$, with fixed energy. Equivalently, there exists a constant $\lambda \in \mathbb{R}$ such that φ is a critical point of the λ-f-bienergy

$$E_{2,\lambda,f}(\varphi) = E_{2,f}(\varphi) + \lambda E_f(\varphi)$$

for any smooth variation of the map φ_t which is defined above.
Using the Euler-Lagrange equations for f-harmonic and f-biharmonic maps, an immersion is f-biminimal if

$$[\tau_{2,\lambda,f}(\varphi)]^\perp = [\tau_{2,f}(\varphi)]^\perp - \lambda[\tau_f(\varphi)]^\perp = 0$$

for some value of $\lambda \in \mathbb{R}$.
Using the Euler-Lagrange equations for f-harmonic and f-biharmonic maps, an immersion is f-biminimal if

$$[\tau_2,\lambda,f(\varphi)]^\perp = [\tau_2,f(\varphi)]^\perp - \lambda[\tau_f(\varphi)]^\perp = 0$$ \hspace{1cm} (6)$$

for some value of $\lambda \in \mathbb{R}$.

We call an immersion free f-biminimal if it is f-biminimal for $\lambda = 0$. If φ is a f-biminimal but not biminimal immersion then it is called as proper f-biminimal.
Let $\gamma : I \subset \mathbb{R} \longrightarrow (M^m, g)$ be a curve parametrized by arc length in a Riemannian manifold (M^m, g). We recall the definition of Frenet frames:

Definition 2 (Laugwitz)

The Frenet frame $\{E_i\}_{i=1,2,...,m}$ associated with a curve $\gamma : I \subset \mathbb{R} \longrightarrow (M^m, g)$ is the orthonormalization of the $(m + 1) −$tuple

$$\left\{ \left. \nabla^{(k)} \frac{d\gamma}{dt} \frac{\partial}{\partial t} \right|_{k=0,1,...,m} \right\}$$

described by
\[E_1 = d\gamma \left(\frac{\partial}{\partial t} \right), \]

\[\nabla_{\frac{\partial}{\partial t}} E_1 = k_1 E_2, \]

\[\nabla_{\frac{\partial}{\partial t}} E_i = -k_{i-1} E_{i-1} + k_i E_{i+1}, \quad 2 \leq i \leq m - 1, \]

\[\nabla_{\frac{\partial}{\partial t}} E_m = -k_{m-1} E_{m-1}, \]

where the function \(\{ k_1 = k > 0, k_2 = \tau, k_3, \ldots, k_{m-1} \} \) are called the curvatures of \(\gamma \). In addition \(E_1 = T = \gamma' \) is the unit tangent vector field to the curve.
\[E_1 = d\gamma\left(\frac{\partial}{\partial t}\right), \]
\[\nabla^{\gamma}\left(\frac{\partial}{\partial t}\right) E_1 = k_1 E_2, \]
\[\nabla^{\gamma}\left(\frac{\partial}{\partial t}\right) E_i = -k_{i-1}E_{i-1} + k_i E_{i+1}, \quad 2 \leq i \leq m - 1, \]
\[\nabla^{\gamma}\left(\frac{\partial}{\partial t}\right) E_m = -k_{m-1}E_{m-1}, \]

where the function \(\{k_1 = k > 0, k_2 = \tau, k_3, ..., k_{m-1}\} \) are called the curvatures of \(\gamma \). In addition \(E_1 = T = \gamma' \) is the unit tangent vector field to the curve.

Firstly we have the following proposition for \(f \)-biminimal curve in Riemannian manifold:
Proposition 3

Let M^m be a Riemannian manifold and $\gamma : I \subset \mathbb{R} \rightarrow (M^m, g)$ be an isometric curve. Then γ is f-biminimal if and only if there exists a real number λ such that

$$f \{ (k_1'' - k_1^3 - k_1 k_2^2) - k_1 g(R(E_1, E_2)E_1, E_2) \}$$

$$+ (f'' - \lambda f) k_1 + 2f' k' = 0,$$

(7)

$$f \{ (k_1' k_2 + (k_1 k_2)') - k_1 g(R(E_1, E_2)E_1, E_3) \} + 2f' k_1 k_2 = 0,$$

(8)

$$f \{ k_1 k_2 k_3 - k_1 g(R(E_1, E_2)E_1, E_4) \} = 0,$$

(9)

$$fk_1 g(R(E_1, E_2)E_1, E_j) = 0, \quad 5 \leq j \leq m,$$

(10)

where R is the curvature tensor of (M^m, g).

Now we investigate f-biminimality conditions for a surface or a three dimensional Riemannian manifold with a constant sectional curvature. Then we have the following corollary:
Now we investigate f-biminimality conditions for a surface or a three dimensional Riemannian manifold with a constant sectional curvature. Then we have the following corollary:

Corollary 4

1) A curve γ on a surface of Gaussian curvature G is f-biminimal if and only if its signed curvature k satisfies the ordinary differential equation

$$f \left(k'' - k^3 - kG \right) + \left(f'' - \lambda f \right) k + 2f'k' = 0 \quad (11)$$

for some $\lambda \in \mathbb{R}$.
2) A curve γ on Riemannian 3-manifold of constant sectional curvature c is f-biminimal if and only if its curvature k and torsion τ satisfy the system

\begin{align*}
 f \left(k'' - k^3 - k \tau^2 - kc \right) + (f'' - \lambda f) k + 2f'k' &= 0 \\
 f \left(k' \tau + (k \tau)' \right) + 2f'k \tau &= 0.
\end{align*}

(12)

for some $\lambda \in \mathbb{R}$.
Let $\varphi : M^m \longrightarrow N^{m+1}$ be an isometric immersion. We shall denote by B, η, A, Δ and $H_1 = H\eta$ the second fundamental form, the unit normal vector field, the shape operator, the Laplacian and the mean curvature vector field of φ (H the mean curvature function), respectively. Then we have the following proposition:

Proposition 5

Let $\varphi : M^m \longrightarrow N^{m+1}$ be an isometric immersion of codimension 1 and $H_1 = H\eta$ its mean curvature vector. Then φ is f-biminimal if and only if

$$\Delta H - H \|B\|^2 + HRicci(N) + \left(\frac{\Delta f}{f} + 2\text{grad} \ln f - \lambda\right) H = 0.$$
Corollary 6

Let \(\varphi : M^m \rightarrow N^{m+1}(c) \) be an isometric immersion of a Riemannian manifold \(N^{m+1}(c) \) of constant curvature \(c \). Then \(\varphi \) is \(f \)-biminimal if and only if there exists a real number \(\lambda \) such that

\[
\Delta H - \left(m^2 H^2 - s + m(m-2)c - \frac{\Delta f}{f} - 2 \text{grad} \ln f + \lambda \right) H = 0
\]

where \(H \) is the mean curvature and \(s \) the scalar curvature of \(M^m \).

In addition, let \(\varphi : M^2 \rightarrow N^3(c) \) be an isometric immersion from a surface to a three-dimension space form. Then \(\varphi \) is \(f \)-biminimal if and only if

\[
\Delta H - 2H \left(2H^2 - G - \frac{1}{2} \frac{\Delta f}{f} - \text{grad} \ln f + \frac{1}{2} \lambda \right) = 0
\]
Examples of f-Biminimal Surfaces on 3-Dimensional Riemannian Manifolds

Now, we find some examples of f-biminimal immersions similar to the methods given in [Loubeau-Montaldo]. A submersion $\varphi : (M, g) \rightarrow (N, h)$ between two Riemannian manifolds in horizontally homothetic if there exists a function $\Lambda : M \rightarrow \mathbb{R}$, the dilation, such that
Examples of f-Biminimal Surfaces on 3-Dimensional Riemannian Manifolds

Now, we find some examples of f-biminimal immersions similar to the methods given in [Loubeau-Montaldo]. A submersion $\varphi : (M, g) \longrightarrow (N, h)$ between two Riemannian manifolds is horizontally homothetic if there exists a function $\wedge : M \longrightarrow \mathbb{R}$, the dilation, such that

1) at each point $p \in M$ the differential $d\varphi_p : H_p \longrightarrow T_{\varphi(p)}N$ is a conformal map with factor $\wedge(p)$, i.e.,

$$\wedge^2(p)g(X, Y)(p) = h(d\varphi_p(X), d\varphi_p(Y))(\varphi(p))$$

for all $X, Y, Z \in H_p = \ker_p(d\varphi)^\perp$.
Examples of f-Biminimal Surfaces on 3-Dimensional Riemannian Manifolds

Now, we find some examples of f-biminimal immersions similar to the methods given in [Loubeau-Montaldo]. A submersion $\varphi : (M, g) \longrightarrow (N, h)$ between two Riemannian manifolds in horizontally homothetic if there exists a function $\wedge : M \longrightarrow \mathbb{R}$, the dilation, such that

1) at each point $p \in M$ the differential $d\varphi_p : H_p \longrightarrow T_{\varphi(p)}N$ is a conformal map with factor $\wedge(p)$, i.e.,

$$\wedge^2(p)g(X, Y)(p) = h(d\varphi_p(X), d\varphi_p(Y))(\varphi(p))$$

for all $X, Y, Z \in H_p = \ker_p(d\varphi)\perp$,

2) $X(\wedge^2) = 0$, for all horizontal vector fields [Loubeau-Montaldo].
Lemma 7 (Loubeau-Montaldo)

Let \(\varphi : (M^n, g) \longrightarrow (N^2, h) \) be a horizontally homothetic submersion with \(\wedge \) and minimal fibres and let \(\gamma : I \subset \mathbb{R} \longrightarrow N^2 \) be a curve parametrized by arc length, of signed curvature \(k_\gamma \). Then the codimension-1 submanifold \(S = \varphi^{-1}(\gamma(I)) \subset M \) has mean curvature \(H_s = \frac{\wedge k_\gamma}{n-1} \).
Lemma 7 (Loubeau-Montaldo)

Let \(\varphi : (M^n, g) \longrightarrow (N^2, h) \) be a horizontally homothetic submersion with \(\wedge \) and minimal fibres and let \(\gamma : I \subset \mathbb{R} \longrightarrow N^2 \) be a curve parametrized by arc length, of signed curvature \(k_\gamma \). Then the codimension-1 submanifold \(S = \varphi^{-1}(\gamma(I)) \subset M \) has mean curvature \(H_s = \frac{\wedge k_\gamma}{n-1} \).

Using the above lemma, we have the following theorem:
Let \(\varphi : \mathcal{M}^3(c) \to (N^2, h) \) be horizontally homothetic submersion with dilation \(\wedge \), from a space form of constant sectional curvature \(c \) to a surface. Let \(\gamma : I \subset \mathbb{R} \to N^2 \) be a curve parametrized by arc length such that the surface \(S = \varphi^{-1}(\gamma(I)) \subset \mathcal{M}^3 \) has constant Gaussian curvature \(c \). The \(S = \varphi^{-1}(\gamma(I)) \subset \mathcal{M}^3 \) is a \(f \)-biminimal surface (with respect to \(2c \)) if and only if \(\gamma \) is a free \(f \)-biminimal curve with \(k_\gamma = c_1 e^t \) where \(c_1 \) is a real constant.
Theorem 9

Let $\varphi : M^3(c) \longrightarrow N^2(\overline{c})$ be a Riemannian submersion with minimal fibres from a space of constant sectional curvature c to surface of constant Gaussian curvature \overline{c}. Let $\gamma : I \subset \mathbb{R} \longrightarrow N^2$ be a curve parametrized by arc length. Then $S = \varphi^{-1}(\gamma(I)) \subset M^3$ is a f-biminimal surface if and only if γ is a f-biminimal curve with $k_\gamma = c_1 e^t$ where c_1 is a real constant.
We consider the Riemannian submersion with totally geodesic fibres, given by the projection onto the first factor
\(\pi : N^2 \times \mathbb{R} \rightarrow N^2 \) and \(\gamma : I \subset \mathbb{R} \rightarrow N^2 \) be a curve parametrized by arc length. Then we can state the following proposition:
We consider the Riemannian submersion with totally geodesic fibres, given by the projection onto the first factor
\[\pi : N^2 \times \mathbb{R} \longrightarrow N^2 \] and \[\gamma : I \subset \mathbb{R} \longrightarrow N^2 \] be a curve parametrized by arc length. Then we can state the following proposition:

Proposition 10

The cylinder \(S = \pi^{-1}(\gamma(I)) \) is a proper \(f \)-biminimal surface in \(N^2 \times \mathbb{R} \) if and only if \(\gamma \) is a proper \(f \)-biminimal curve on \(N^2 \) (\(S^2 \) or \(H^2 \)) with curvature \(k = c_1 e^t \), where \(c_1 \) is a real constant.
The three-dimensional Heisenberg space \mathbb{H}_3 is the two-step nilpotent Lie group standardly represented in $GL_3(\mathbb{R})$ by

$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$ with $x, y, z \in \mathbb{R}$.

It is endowed with the left-invariant metric

$$g = dx^2 + dy^2 + (dz - xdy)^2.$$ (15)
The three-dimensional Heisenberg space \hat{H}_3 is the two-step nilpotent Lie group standardly represented in $GL_3(\mathbb{R})$ by

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \text{ with } x, y, z \in \mathbb{R}.$$

It is endowed with the left-invariant metric

$$g = dx^2 + dy^2 + (dz - xdy)^2. \quad (15)$$

Let $\pi : \hat{H}_3 \to \mathbb{R}^2$ be the projection $(x, y, z) \to (x, y)$. It is easy to see that π is a Riemannian submersion (for more details see [Loubeau-Montaldo]). Take a curve $\gamma(t) = (x(t), y(t))$ in \mathbb{R}^2, parametrized by arc length, with signed curvature k.

F. GÜRLER and C. ÖZGÜR f-Biminimal Immersions
Now we have the following proposition:
Now we have the following proposition:

Proposition 11

The flat cylinder \(S = \pi^{-1}(\gamma(I)) \subset \hat{H}_3 \) is a proper \(f \)-biminimal surface (with respect to \(\lambda \)) of \(\hat{H}_3 \) if and only if \(\gamma \) is a proper \(f \)-biminimal curve (with respect to \(\lambda + 1 \)) of \(\mathbb{R}^2 \) with curvature \(k = c_1 e^t \), where \(c_1 \) is a real constant.
Let \((M^{2m+1}, \varphi, \xi, \eta, g)\) be a contact metric manifold. If the Nijenhuis tensor of \(\varphi\) equals \(-2d\eta \otimes \xi\), then \((M^{2m+1}, \varphi, \xi, \eta, g)\) is called a Sasakian manifold [Blair]. If a Sasakian manifolds has constant \(\varphi\)–sectional curvature \(c\), then it is called a Sasakian space form. The curvature tensor of a Sasakian space form is given by

\[
R(X, Y)Z = \frac{c + 3}{4} \{g(Y, Z)X - g(X, Z)Y\} \\
+ \frac{c - 1}{4} \{g(X, \varphi Z)\varphi Y - g(Y, \varphi Z)\varphi X\} \\
+ 2g(X, \varphi Y)\varphi Z + \eta(X)\eta(Z)Y \\
- \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\]

(16)
A submanifold of a Sasakian manifold is called an integral submanifold if $\eta(X) = 0$, for every tangent vector X. A 1-dimension integral submanifold of a Sasakian manifold is called a Legendre curve of M. Hence a curve $\gamma : I \longrightarrow M = (M^{2m+1}, \varphi, \xi, \eta, g)$ is called a Legendre curve if $\eta(T) = 0$, where T is the tangent vector field of γ [Blair 2002].
A submanifold of a Sasakian manifold is called an integral submanifold if $\eta(X) = 0$, for every tangent vector X. A 1-dimension integral submanifold of a Sasakian manifold is called a Legendre curve of M. Hence a curve
$\gamma : I \rightarrow M = (M^{2m+1}, \varphi, \xi, \eta, g)$ is called a Legendre curve if $\eta(T) = 0$, where T is the tangent vector field of γ [Blair 2002].

Theorem 12

Let $\gamma : (a, b) \rightarrow M$ be a non-geodesic Legendre Frenet curve of osculating order r in a Sasakian space form $M = (M^{2m+1}, \varphi, \xi, \eta, g)$. Then γ is f-biminimal if and only if the following three equations hold.
\[k''_1 - k^3_1 - k_1 k^2_2 + \frac{(c + 3)}{4} k_1 + 2 k'_1 \frac{f'}{f} + k_1 \frac{f''}{f} \]

\[-\lambda k_1 + \frac{3(c - 1)}{4} \left[k_1 g(\varphi T, E_2)^2 \right] \perp = 0, \]

\[k'_1 k_2 + (k_1 k_2)' + 2 k_1 k_2 \frac{f'}{f} + \frac{3(c - 1)}{4} \left[k_1 g(\varphi T, E_2) g(\varphi T, E_3) \right] \perp = 0 \]

and

\[k_1 k_2 k_3 + \frac{3(c - 1)}{4} \left[k_1 g(\varphi T, E_2) g(\varphi T, E_4) \right] \perp = 0. \]
Let’s recall some notions about the Sasakian space form $\mathbb{R}^{2m+1}(-3)$ [Blair 2002]:

Let us take $M = \mathbb{R}^{2m+1}$ with the standard coordinate functions $(x_1, \ldots, x_m, y_1, \ldots, y_m, z)$, the contact structure $\eta = \frac{1}{2}(dz - \sum_{i=1}^{m} y_i dx_i)$, the characteristic vector field $\xi = 2 \frac{\partial}{\partial z}$ and the tensor field φ given by

$$\varphi = \begin{bmatrix} 0 & \delta_{ij} & 0 \\ -\delta_{ij} & 0 & 0 \\ 0 & y_j & 0 \end{bmatrix}.$$
The Riemannian metric is $g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{m} ((dx_i)^2 + (dy_i)^2)$. Then $(M^{2m+1}, \varphi, \xi, \eta, g)$ is a Sasakian space form with constant φ–sectional curvature $c = -3$ and it is denoted by $\mathbb{R}^{2m+1}(-3)$. The vector fields

$$X_i = 2 \frac{\partial}{\partial y_i}, \quad X_{i+m} = \varphi X_i = 2\left(\frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}\right), \quad 1 \leq i \leq m, \quad \xi = 2 \frac{\partial}{\partial z},$$

(17)

form a g-orthonormal basis and Levi-Civita connection is calculated

$$\nabla_{X_i} X_j = \nabla_{X_{i+m}} X_{j+m} = 0, \quad \nabla_{X_i} X_{j+m} = \delta_{ij} \xi, \quad \nabla_{X_{i+m}} X_j = -\delta_{ij} \xi,$$

$$\nabla_{X_i} \xi = \nabla_{\xi} X_i = -X_{m+i}, \quad \nabla_{X_{i+m}} \xi = \nabla_{\xi} X_{i+m} = X_i$$

(see [Blair]).
Now, let us produce example of proper f-biminimal Legendre curves in $\mathbb{R}^5(−3)$:
Now, let us produce example of proper f-biminimal Legendre curves in $\mathbb{R}^5(-3)$:

Example. Let $\gamma = (\gamma_1, \ldots, \gamma_5)$ be a unit speed Legendre curve in $\mathbb{R}^5(-3)$. The tangent vector field of γ is

$$T = \frac{1}{2} \left\{ \gamma_3' X_1 + \gamma_4' X_2 + \gamma_1' X_3 + \gamma_2' X_4 + (\gamma_5' - \gamma_1' \gamma_3 - \gamma_2' \gamma_4) \xi \right\}.$$

Using the above equation, since γ is a unit speed Legendre curve we have $\eta(T) = 0$ and $g(T, T) = 1$, that is,

$$\gamma_5' = \gamma_1' \gamma_3 - \gamma_2' \gamma_4$$

and

$$(\gamma_1')^2 + \ldots + (\gamma_5')^2 = 4.$$
For a Legendre curve, we can use the Levi-Civita connection and equation (17) to write

$$\nabla_{T} T = \frac{1}{2} \left(\gamma''' X_1 + \gamma''' X_2 + \gamma'' X_3 + \gamma'' X_4 \right), \quad (18)$$

$$\varphi T = \frac{1}{2} \left(-\gamma' X_1 - \gamma' X_2 + \gamma' X_3 + \gamma' X_4 \right). \quad (19)$$

From equations (18), (19) and $\varphi T \perp E_2$ if and only if

$$\gamma' \gamma''' + \gamma' \gamma''' = \gamma' \gamma'' + \gamma' \gamma''.$$
Finally, we can give the following explicit example:

Let us take $\gamma(t) = (\sin 2t, -\cos 2t, 0, 0, 1)$ in $\mathbb{R}^5(-3)$. Using the above equations and Theorem 12, γ is a proper f-biminimal Legendre curve with osculating order $r = 2$, $k_1 = 2$, $f = e^t$, $\varphi T \perp E_2$. We can easily check that the conditions of Theorem 12 are verified.
References

Thank you...