Planar p-Elasticae and Rotational Linear Weingarten Surfaces

Álvaro Pámpano Llarena

XXth International Conference Geometry, Integrability and Quantization

Varna, June 2-7 2018
Introduction

Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy $\Theta(\gamma) = \int \kappa^2$.

Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod. In 1744, L. Euler published his classification of the planar elastic curves.

Since then, elastica related problems have shown remarkable applications to many different fields: Helfreich-Canham Models in Biophysics, Worldsheets for Kleinert-Polyakov Action in String Theory, Fluid Dynamics..
Introduction

Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma: I \rightarrow \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy $\Theta(\gamma) = \int \gamma \kappa^2$.

• Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
• In 1744, L. Euler published his classification of the planar elastic curves.
• Since then, elastica related problems have shown remarkable applications to many different fields: Helfreich-Canham Models in Biophysics, Worldsheets for Kleinert-Polyakov Action in String Theory, Fluid Dynamics..
Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma : I \rightarrow \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$$\Theta(\gamma) = \int_{\gamma} \kappa^2.$$
Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called **elastica** if it is a **critical point** of the **bending energy**

$$\Theta(\gamma) = \int_{\gamma} \kappa^2.$$

- **Classical Variational Problem.** In 1691, J. Bernoulli proposed to determine the final **shape of a flexible rod**.
Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma : I \rightarrow \mathbb{R}^2$ is called **elastica** if it is a critical point of the bending energy

$$\Theta(\gamma) = \int_\gamma \kappa^2.$$

- **Classical Variational Problem.** In 1691, J. Bernoulli proposed to determine the final **shape of a flexible rod**.

- In 1744, L. Euler published his classification of the **planar elastic curves**.
Introduction

Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma : I \to \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$$\Theta(\gamma) = \int_{\gamma} \kappa^2.$$

- Classical Variational Problem. In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields:
Elastic Curve

Following the model of D. Bernoulli, a curve $\gamma : I \rightarrow \mathbb{R}^2$ is called elastica if it is a critical point of the bending energy

$$\Theta(\gamma) = \int_{\gamma} \kappa^2.$$

- **Classical Variational Problem.** In 1691, J. Bernoulli proposed to determine the final shape of a flexible rod.
- In 1744, L. Euler published his classification of the planar elastic curves.
- Since then, elastica related problems have shown remarkable applications to many different fields:
 - Helfreich-Canham Models in Biophysics,
 - Worldsheets for Kleinert-Polyakov Action in String Theory,
 - Fluid Dynamics.
1. Planar p-Elasticae
1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae
1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae
3. Rotational Linear Weingarten Surfaces
1. Planar p-Elasticae
2. Binormal Evolution of p-Elasticae
3. Rotational Linear Weingarten Surfaces
4. Remarkable Particular Cases
Planar p-Elasticae

1. Variational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
4. Killing Fields along p-Elasticae
5. First Integral of Euler-Lagrange
Planar p-Elasticae

1. Varational Problem
Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies
Planar p-Elasticae

1. Varational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
Planar p-Elasticae

1. Variational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
4. Killing Fields along p-Elasticae
Planar p-Elasticae

1. Variational Problem
2. Involved Classical Energies
3. Euler-Lagrange Equation
4. Killing Fields along p-Elasticae
5. First Integral of Euler-Lagrange
Variational Problem

We are going to consider the curvature energy functional

\[\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p \, ds, \]

where \(\mu \) and \(p \in \mathbb{R} \) are fixed real constants, acting on \(\Omega_{p_0} \).

\(\Omega_{p_0} \) is the space of smooth immersed curves of \(\mathbb{R}^2 \) joining two points of it, and verifying that \(\kappa - \mu > 0 \).

Take into account that \(\kappa = \mu \) would be a global minimum if we were considering \(L_1([0, L]) \) as the space of curves.
We are going to consider the curvature energy functional
\[\Theta(\gamma) = \int_{L_0} (\kappa(s) - \mu)^p \, ds, \]
where \(\mu \) and \(p \) are fixed real constants acting on \(\Omega_{p_o} \).

- We denote by \(\Omega_{p_o} \) the space of smooth immersed curves of \(\mathbb{R}^2 \) joining two points of it, and verifying that \(\kappa - \mu > 0 \).
- Take into account that \(\kappa = \mu \) would be a global minimum if we were considering \(L_1([0,L]) \) as the space of curves.
We are going to consider the curvature energy functional

\[\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds , \]

where \(\mu \) and \(p \in \mathbb{R} \) are fixed real constants, acting on \(\Omega_{p_0p_1} \).
We are going to consider the curvature energy functional
\[\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds, \]
where \(\mu \) and \(p \in \mathbb{R} \) are fixed real constants, acting on \(\Omega_{p_o p_1} \).

- We denote by \(\Omega_{p_o p_1} \) the space of smooth immersed curves of \(\mathbb{R}^2 \) joining two points of it, and verifying that \(\kappa - \mu > 0 \).
We are going to consider the curvature energy functional
\[
\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p = \int_0^L (\kappa(s) - \mu)^p \, ds,
\]
where \(\mu \) and \(p \in \mathbb{R} \) are fixed real constants, acting on \(\Omega_{pop1} \).

- We denote by \(\Omega_{pop1} \) the space of smooth immersed curves of \(\mathbb{R}^2 \) joining two points of it, and verifying that \(\kappa - \mu > 0 \).
- Take into account that \(\kappa = \mu \) would be a global minimum if we were considering \(L^1([0, L]) \) as the space of curves.
Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p ,$$

involves the following classical energies:

- If $p = 0$, we have the Length functional. Critical curves are geodesics.
- If $p = 1$, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p = 2$ and $\mu = 0$, Θ is the Bending energy. And, the critical curves are elastic curves.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Involved Classical Energies

Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p,$$

involves the following classical energies:

• If $p = 0$, we have the Length functional. Critical curves are geodesics.

• If $p = 1$, Θ is, basically, the Total Curvature functional. Any planar curve is critical.

• If $p = 2$ and $\mu = 0$, Θ is the Bending energy. And, the critical curves are elastic curves.

• If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p ,$$

involves the following classical energies:

- If $p = 0$, we have the **Length functional**.
- If $p = 1$, Θ is, basically, the **Total Curvature functional**.
- If $p = 2$ and $\mu = 0$, Θ is the **Bending energy**.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining **catenaries**.
Involved Classical Energies

Notice that the \(p \)-Elastic functional

\[
\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p,
\]

involves the following classical energies:

- If \(p = 0 \), we have the \textbf{Length functional}. Critical curves are \textbf{geodesics}.
- If \(p = 1 \), \(\Theta \) is, basically, the \textbf{Total Curvature functional}. Any planar curve is critical.
- If \(p = 2 \) and \(\mu = 0 \), \(\Theta \) is the \textbf{Bending energy}. And, the critical curves are \textbf{elastic curves}.
- If \(p = \frac{1}{2} \) and \(\mu = 0 \), we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Involved Classical Energies

Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p,$$

involves the following classical energies:

- If $p = 0$, we have the Length functional. Critical curves are geodesics.
- If $p = 1$, Θ is, basically, the Total Curvature functional.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Involved Classical Energies

Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p,$$

involves the following classical energies:

- If $p = 0$, we have the **Length functional**.
 Critical curves are **geodesics**.
- If $p = 1$, Θ is, basically, the **Total Curvature functional**.
 Any planar curve is critical.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Involved Classical Energies

Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p ,$$

involves the following classical energies:

- If $p = 0$, we have the **Length functional**. Critical curves are **geodesics**.
- If $p = 1$, Θ is, basically, the **Total Curvature functional**. Any planar curve is critical.
- If $p = 2$ and $\mu = 0$, Θ is the **Bending energy**.
Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p ,$$

involves the following classical energies:

- If $p = 0$, we have the Length functional. Critical curves are geodesics.
- If $p = 1$, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p = 2$ and $\mu = 0$, Θ is the Bending energy. And, the critical curves are elastic curves.
Notice that the p-Elastic functional

$$
\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p,
$$

involves the following classical energies:

- If $p = 0$, we have the Length functional. Critical curves are geodesics.
- If $p = 1$, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p = 2$ and $\mu = 0$, Θ is the Bending energy. And, the critical curves are elastic curves.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930.
Involved Classical Energies

Notice that the p-Elastic functional

$$\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p,$$

involves the following classical energies:

- If $p = 0$, we have the Length functional. Critical curves are geodesics.
- If $p = 1$, Θ is, basically, the Total Curvature functional. Any planar curve is critical.
- If $p = 2$ and $\mu = 0$, Θ is the Bending energy. And, the critical curves are elastic curves.
- If $p = \frac{1}{2}$ and $\mu = 0$, we have a variational problem studied by Blaschke in 1930, obtaining catenaries.
Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p$, in \mathbb{R}^2 with $p \neq 0$, can be written as
\[
d_s^2 \left((\kappa - \mu)^p - 1 \right) + \kappa^2 (\kappa - \mu)^p - 1 = 0.
\]

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]
The Euler-Lagrange equation is a generalized EMP equation. Indeed, for $p = \frac{1}{2}$, we get the proper EMP equation
\[
\phi'' + \mu^2 \phi = \phi^3.
\]
The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p$, in \mathbb{R}^2 with $p \neq 0, 1$ can be written as

$$\frac{d^2}{ds^2} \left((\kappa - \mu)^{p-1}\right) + \kappa^2 (\kappa - \mu)^{p-1} - \frac{1}{p} \kappa (\kappa - \mu)^p = 0.$$
The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p$, in \mathbb{R}^2 with $p \neq 0, 1$ can be written as

$$\frac{d^2}{ds^2} ((\kappa - \mu)^{p-1}) + \kappa^2 (\kappa - \mu)^{p-1} - \frac{1}{p} \kappa (\kappa - \mu)^p = 0.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)
The Euler-Lagrange equation for the curvature energy functional \(\Theta(\gamma) = \int_{\gamma} (\kappa - \mu)^p \), in \(\mathbb{R}^2 \) with \(p \neq 0, 1 \) can be written as

\[
\frac{d^2}{ds^2} ((\kappa - \mu)^{p-1}) + \kappa^2 (\kappa - \mu)^{p-1} - \frac{1}{p} \kappa (\kappa - \mu)^p = 0.
\]

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (\(p \)-Elastic Curves)

Generalized EMP Equation [3]
The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p$, in \mathbb{R}^2 with $p \neq 0, 1$ can be written as

$$\frac{d^2}{ds^2} \left((\kappa - \mu)^{p-1}\right) + \kappa^2 (\kappa - \mu)^{p-1} - \frac{1}{p} \kappa (\kappa - \mu)^p = 0.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

The Euler-Lagrange equation is a generalized EMP equation.
Euler-Lagrange Equation

The Euler-Lagrange equation for the curvature energy functional $\Theta(\gamma) = \int_\gamma (\kappa - \mu)^p$, in \mathbb{R}^2 with $p \neq 0, 1$ can be written as

$$\frac{d^2}{ds^2} \left((\kappa - \mu)^{p-1} \right) + \kappa^2 (\kappa - \mu)^{p-1} - \frac{1}{p} \kappa (\kappa - \mu)^p = 0.$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional. (p-Elastic Curves)

Generalized EMP Equation [3]

The Euler-Lagrange equation is a generalized EMP equation. Indeed, for $p = \frac{1}{2}$, we get the proper EMP equation

$$\phi'' + \mu^2 \phi = \frac{1}{\phi^3}.$$
Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold:

$$W(v)(\bar{t}, 0) = W(\kappa)(\bar{t}, 0) = 0.$$

Killing Vector Fields along γ[1]

The vector fields along γ defined by

$$I = (\kappa - \mu)p - 1B,$$
$$J = ((p - 1)\kappa + \mu)(\kappa - \mu)p - 1T + pds((\kappa - \mu)p - 1)N$$

are Killing vector fields along γ, if and only if, γ verifies the Euler-Lagrange equation.
Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a **Killing vector field along γ** if it evolves in the direction of W without changing shape, only position.

That is, if the following equations hold:

$$W(v)(\bar{t},0) = \kappa(\bar{t},0) = 0.$$

Killing Vector Fields along γ [1]

The vector fields along γ defined by:

$$I = (\kappa - \mu)p^{-1}B,$$

$$J = (p^{-1}\kappa + \mu)(\kappa - \mu)p^{-1}T + p d_s \frac{d}{ds}(\kappa p^{-1}).$$

are Killing vector fields along γ, if and only if, γ verifies the Euler-Lagrange equation.
Killing Fields along p-Elasticae

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$W(\nu)(\bar{t},0) = W(\kappa)(\bar{t},0) = 0.$$
Killing Fields along \(p \)-Elasticae

A vector field \(W \) along \(\gamma \), which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along \(\gamma \) if it evolves in the direction of \(W \) without changing shape, only position. That is, if the following equations hold

\[
W(\nu)(\bar{\xi},0) = W(\kappa)(\bar{\xi},0) = 0 .
\]

Killing Vector Fields along \(\gamma \) [1]

The vector fields along \(\gamma \) defined by

\[
\mathcal{I} = (\kappa - \mu)^{p-1} B , \\
\mathcal{J} = ((p-1)\kappa + \mu)(\kappa - \mu)^{p-1} T + p \frac{d}{ds} ((\kappa - \mu)^{p-1}) N
\]
Killing Fields along p-Elasticae

A vector field \(W \) along \(\gamma \), which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along \(\gamma \) if it evolves in the direction of \(W \) without changing shape, only position. That is, if the following equations hold

\[
W(\nu)(\bar{t}, 0) = W(\kappa)(\bar{t}, 0) = 0.
\]

Killing Vector Fields along \(\gamma \) [1]

The vector fields along \(\gamma \) defined by

\[
\begin{align*}
\mathcal{I} & = (\kappa - \mu)^{p-1} B, \\
\mathcal{J} & = ((p - 1)\kappa + \mu)(\kappa - \mu)^{p-1} T + p\frac{d}{ds}((\kappa - \mu)^{p-1}) N
\end{align*}
\]

are Killing vector fields along \(\gamma \), if and only if, \(\gamma \) verifies the Euler-Lagrange equation.
First Integral of Euler-Lagrange
First Integral of Euler-Lagrange

Theorem [3]

The derivative of the function $\langle \mathcal{J}, \mathcal{J} \rangle$ along the critical curves is zero. Thus, we have that

$$p^2 |\mathcal{J}|^2 = d,$$

for any positive constant d.
THEOREM [3]

The derivative of the function $\langle \mathcal{J}, \mathcal{J} \rangle$ along the critical curves is zero. Thus, we have that

$$p^2 |\mathcal{J}|^2 = d,$$

for any positive constant d.

Therefore, we can integrate the Euler-Lagrange equation, obtaining

$$(\kappa')^2 = \frac{(\kappa - \mu)^2}{p^2(p - 1)^2} \left(d (\kappa - \mu)^2(1-p) - ((p - 1)\kappa + \mu)^2 \right).$$
Binormal Evolution of p-Elasticae

1. Associated Killing Vector Field
2. Evolution under Binormal Flow
3. Geometric Properties of this Binormal Evolution Surface
1. Associated Killing Vector Field
Binormal Evolution of p-Elasticae

1. Associated Killing Vector Field
2. Evolution under Binormal Flow
1. Associated Killing Vector Field
2. Evolution under Binormal Flow
3. Geometric Properties of this Binormal Evolution Surface
A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3. Moreover, this extension is unique. Thus, any planar p-Elasticae has two associated Killing vector fields, which extend I and J.

• Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries.
• Any Killing vector field in \mathbb{R}^3 can be assumed to be of helical type $\lambda_1 X + \lambda_2 V$.
Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3.

Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries. Any Killing vector field in \mathbb{R}^3 can be assumed to be of helical type $\lambda_1 X + \lambda_2 V$.

A vector field along a curve is a **Killing vector field along the curve**, if and only if, it extends to a **Killing field** on the whole \mathbb{R}^3. Moreover, this **extension** is unique.
Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3. Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend I and J.

Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries. Any Killing vector field in \mathbb{R}^3 can be assumed to be of helical type $\lambda_1 X + \lambda_2 V$.

Associated Killing Vector Field

Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3. Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J}.

- Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries.
Unique Extension

A vector field along a curve is a Killing vector field along the curve, if and only if, it extends to a Killing field on the whole \mathbb{R}^3. Moreover, this extension is unique.

Thus, any planar p-Elasticae has two associated Killing vector fields, which extend \mathcal{I} and \mathcal{J}.

- Killing vector fields in \mathbb{R}^3 are the infinitesimal generators of isometries.
- Any Killing vector field in \mathbb{R}^3 can be assumed to be of helical type

$$\lambda_1 X + \lambda_2 V.$$
Evolution under Binormal Flow

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$I = (\kappa - \mu) p - \frac{1}{p} B.$$

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends I.

3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by

$$\{ \phi_t, t \in \mathbb{R} \}.$$

4. Now, construct the surface $S_\gamma := \{ x(s, t) := \phi_t(\gamma(s)) \}$.
Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3.
Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$\mathcal{I} = (\kappa - \mu)^{p-1} B.$$

Evolution under Binormal Flow

Take \(\gamma \) any planar \(p \)-Elasticae contained in any totally geodesic surface of \(\mathbb{R}^3 \).

1. Consider the Killing vector field along \(\gamma \) in the direction of the binormal, that is,

\[
\mathcal{I} = (\kappa - \mu)^{p-1} B.
\]

2. Let’s denote by \(\xi \) the associated Killing vector field on \(\mathbb{R}^3 \) that extends \(\mathcal{I} \).
Evolution under Binormal Flow

Take \(\gamma \) any planar \(p \)-Elasticae contained in any totally geodesic surface of \(\mathbb{R}^3 \).

1. Consider the Killing vector field along \(\gamma \) in the direction of the binormal, that is,

\[
I = (\kappa - \mu)^{p-1} B.
\]

2. Let’s denote by \(\xi \) the associated Killing vector field on \(\mathbb{R}^3 \) that extends \(I \).

3. Since \(\mathbb{R}^3 \) is complete, we have the one-parameter group of isometries determined by the flow of \(\xi \) is given by \(\{ \phi_t, t \in \mathbb{R} \} \).
Evolution under Binormal Flow

Take γ any planar p-Elasticae contained in any totally geodesic surface of \mathbb{R}^3.

1. Consider the Killing vector field along γ in the direction of the binormal, that is,

$$I = (\kappa - \mu)^{p-1} B.$$

2. Let’s denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends I.

3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.

4. Now, construct the surface $S_\gamma := \{x(s, t) := \phi_t(\gamma(s))\}$.
Geometric Properties of this BES

The surface S_γ is a ξ-invariant surface,
Geometric Properties of this BES

The surface S_γ is a ξ-invariant surface, and it verifies:

- S_γ is a rotational surface.

Theorem [1]
Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

Theorem [4]
Let γ be a planar p-Elastica, then, the BES generated by γ verifies $\kappa_1 = a \kappa_2 + b$, for $a = p^p - 1$, $b = -p^p - 1$.
The surface S_γ is a ξ-invariant surface, and it verifies:

- S_γ is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.
The surface S_γ is a ξ-invariant surface, and it verifies:

- S_γ is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

- The principal curvatures of S_γ are related by $\kappa_1 = a\kappa_2 + b$.
Geometric Properties of this BES

The surface S_γ is a ξ-invariant surface, and it verifies:

- S_γ is a rotational surface.

Theorem [1]

Let γ be a planar curve, then, the BES with initial condition γ is either, a flat isoparametric surface, if κ is constant; or a rotational surface, if κ is not constant.

- The principal curvatures of S_γ are related by $\kappa_1 = a\kappa_2 + b$.

Theorem [4]

Let γ be a planar p-Elasticae, then, the BES generated by γ verifies $\kappa_1 = a\kappa_2 + b$, for

$$a = \frac{p}{p - 1}, \quad b = \frac{-\mu}{p - 1}.$$
1. Weingarten Surfaces
1. Weingarten Surfaces
2. Classification of Rotational Linear Weingarten Surfaces
Rotational Linear Weingarten Surfaces

1. Weingarten Surfaces
2. Classification of Rotational Linear Weingarten Surfaces
3. Characterization of Profile Curves
A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)
A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)
Weingarten Surfaces

A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)
A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}, a \neq 0$.

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)

- Isoparametric Surfaces (Circular Cylinders)

- Constant Mean Curvature Surfaces (Rotational Case: Delaunay Surfaces)
A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
A Weingarten surface in \(\mathbb{R}^3 \) is a surface where the two principal curvatures \(\kappa_1 \) and \(\kappa_2 \) satisfy a certain relation \(\Phi(\kappa_1, \kappa_2) = 0 \). Here we consider the linear relation

\[
\kappa_1 = a\kappa_2 + b,
\]

where \(a, b \in \mathbb{R}, a \neq 0 \).

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces
A Weingarten surface in \mathbb{R}^3 is a surface where the two principal curvatures κ_1 and κ_2 satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here we consider the linear relation

$$\kappa_1 = a\kappa_2 + b,$$

where $a, b \in \mathbb{R}$, $a \neq 0$.

Well-known families of linear Weingarten surfaces are:

- Umbilical Surfaces (Plane and Sphere)
- Isoparametric Surfaces (Circular Cylinders)
- Constant Mean Curvature Surfaces
 (Rotational Case: Delaunay Surfaces)
Classification \((b = 0)\)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation \(\kappa_1 = a \kappa_2\), \(a \neq 0\), are planes, ovaloids and catenoid-type surfaces. Moreover,

- Case \(a > 0\). The rotational surface is an ovaloid.
Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation $\kappa_1 = a\kappa_2$, \(a \neq 0 \), are planes, ovaloids and catenoid-type surfaces.
Classification \((b = 0)\)

Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation \(\kappa_1 = a\kappa_2, a \neq 0\), are planes, ovaloids and catenoid-type surfaces.

Moreover,

- Case \(a > 0\). The rotational surface is an ovaloid.
Theorem [4]

The rotational linear Weingarten surfaces satisfying the relation \(\kappa_1 = a\kappa_2 \), \(a \neq 0 \), are planes, ovaloids and catenoid-type surfaces.

Moreover,

- Case \(a < 0 \). The rotational surface is of catenoid-type.

(A) \(a < -1 \)

(B) \(a \in [-1, 0) \)
Classification \((a > 0 \text{ and } b \neq 0) \)

Theorem [4]

Let \(a > 0 \) and \(b \neq 0 \). The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Vesicle-Type Surfaces
Classification \((a > 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a > 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or
Classification \((a > 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a > 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- **Vesicle-Type Surfaces**
Theorem [4]

Let $a > 0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Pinched Spheroid
Theorem [4]

Let \(a > 0 \) and \(b \neq 0 \). The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Immersed Spheroid
Classification \((a > 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a > 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Cylindrical Antinodoid-Type Surfaces
Theorem [4]

Let $a > 0$ and $b \neq 0$. The rotational linear Weingarten surfaces are either ovaloids, circular cylinders or

- Antinodoid-Type Surfaces
Classification \((a < 0 \text{ and } b \neq 0)\)
Classification \((a < 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a < 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.
Classification \((a < 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a < 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

- **Unduloid-Type Surfaces**
Classification \((a < 0 \text{ and } b \neq 0)\)

Theorem [4]

Let \(a < 0\) and \(b \neq 0\). The rotational linear Weingarten surfaces are unduloid-type, circular cylinders, spheres and nodoid-type.

- Nodoid-Type Surfaces
A rotational surface M can be, locally, described by

$$M = S_\gamma := \{ x(s, t) = \phi_t(\gamma(s)) \},$$

where,

- ϕ_t is the rotation,
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_t).

Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve. Then, if $a \neq 1$, γ is a planar μ-Elastic curve for

$$\mu = -\frac{b}{a} - 1, \quad p = \frac{a}{a - 1}.$$
A rotational surface M can be, locally, described by

$$M = S_\gamma := \{ x(s, t) = \phi_t(\gamma(s)) \},$$
A rotational surface M can be, locally, described by

$$M = S_\gamma := \{ x(s, t) = \phi_t(\gamma(s)) \},$$

where,

- ϕ_t is the rotation,
A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{ x(s, t) = \phi_t(\gamma(s)) \},$$

where,

- ϕ_t is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_t).
A rotational surface M can be, locally, described by

$$M = S_\gamma := \{x(s, t) = \phi_t(\gamma(s))\},$$

where,

- ϕ_t is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_t).

Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve.
Characterization of Profile Curves

A rotational surface M can be, locally, described by

$$M = S_\gamma := \{x(s, t) = \phi_t(\gamma(s))\},$$

where,

- ϕ_t is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of ϕ_t).

Then,

Theorem [4]

Let M be a rotational linear Weingarten surface and let $\gamma(s)$ be its profile curve. Then, if $a \neq 1$, γ is a planar p-Elastic curve for

$$\mu = \frac{-b}{a - 1}, \quad p = \frac{a}{a - 1}. $$
Summary of the Main Results

\[
\text{BES + Planar p-Elastica} \iff \text{Rotational LW}
\]

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with \(a \neq 1 \).

\[
= \{4\}
\]

Every rotational linear Weingarten surface (with \(a \neq 1 \)) admits a geodesic foliation by planar p-Elasticae.

\[
\Rightarrow \{1\} + \{4\}
\]

The evolution under the binormal flow of any planar p-Elasticae generates rotational linear Weingarten surfaces.
Summary of the Main Results

BES + Planar p-Elastica \iff Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

\Rightarrow ([4])

Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.

\Rightarrow ([1]+[4])

The evolution under the binormal flow of any planar p-Elasticae generates rotational linear Weingarten surfaces.
Summary of the Main Results

BES + Planar p-Elastica ⇔ Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.
Summary of the Main Results

BES + Planar p-Elastica ⇐⇒ Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

$\leftarrow [4]$

Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.
Summary of the Main Results

BES + Planar p-Elastica \iff Rotational LW

Binormal evolution surfaces generated from planar p-Elasticae, are precisely, rotational linear Weingarten surfaces with $a \neq 1$.

$\iff [4]$
Every rotational linear Weingarten surface (with $a \neq 1$) admits a geodesic foliation by planar p-Elasticae.

$\implies [1]+[4]$
The evolution under the binormal flow of any planar p-Elasticae generates rotational linear Weingarten surfaces.
Remarkable Particular Cases

1. Classic Elastic Curves and Mylar Balloons
2. Extended Blaschke’s Energy and Delaunay Surfaces
Remarkable Particular Cases

1. Classic Elastic Curves and Mylar Balloons
Remarkable Particular Cases

1. Classic Elastic Curves and Mylar Balloons
2. Extended Blaschke’s Energy and Delaunay Surfaces
Take $p = 2$ and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$\Theta(\gamma) = \int_\gamma \kappa^2.$$
Take $p = 2$ and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$\Theta(\gamma) = \int_\gamma \kappa^2.$$

Critical curves of bending energy are elastic curves.
Take $p = 2$ and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$\Theta(\gamma) = \int_\gamma \kappa^2.$$

Critical curves of bending energy are elastic curves.

Curvature of Planar Elastic Curves

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$\kappa(s) = \kappa_o \operatorname{cn} \left(\frac{\kappa_o}{\sqrt{2}} s, \frac{\sqrt{2}}{2} \right).$$
Take $p = 2$ and $\mu = 0$ in the p-elastic energy. That is, we have the bending energy

$$\Theta(\gamma) = \int \kappa^2.$$

Critical curves of bending energy are elastic curves.

Curvature of Planar Elastic Curves

Solving the Euler-Lagrange equations, we obtain that the non-geodesic planar elastic curves have curvature given by

$$\kappa(s) = \kappa_o \cn\left(\frac{\kappa_o}{\sqrt{2}} s, \frac{\sqrt{2}}{2}\right).$$

- $\kappa_o = \kappa_o(d)$ is a constant (the maximum curvature) and cn denotes the Jacobi cosine.
Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$.
Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.
Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties).
Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying $\kappa_1 = 2\kappa_2$. Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify $x(s) = \frac{2\kappa(s)}{\sqrt{d}}$.
Mylar Balloons

Profile Curves of Mylar Balloons

The binormal evolution surface generated from a planar elastic curve is a rotational surface verifying \(\kappa_1 = 2\kappa_2 \). Furthermore, the converse is also true.

- These rotational surfaces are essentially unique (up to translations and homotheties). They are called Mylar Balloons.
- We also know that, planar elastic curves verify \(x(s) = \frac{2\kappa(s)}{\sqrt{d}} \).
- Thus, after rotating we obtain the parametrization of Mylar Balloons:

\[
x(s, \theta) = \frac{1}{\sqrt{d}} \left(2\kappa \cos \theta, 2\kappa \sin \theta, \int \kappa^2 \, ds \right),
\]

where \(\kappa(s) \) is the curvature of \(\gamma \).
Take $p = \frac{1}{2}$ in the p-Elastic energy, that is,

$$\Theta(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds.$$
Take \(p = \frac{1}{2} \) in the p-Elastic energy, that is,

\[
\Theta(\gamma) := \int_\gamma \sqrt{\kappa - \mu} = \int_0^L \sqrt{\kappa(s) - \mu} \, ds.
\]

1. If \(\kappa = \mu \) then \(\gamma \) is an absolute minima for \(\Theta \).
Take $p = \frac{1}{2}$ in the p-Elastic energy, that is,

$$
\Theta(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds.
$$

1. If $\kappa = \mu$ then γ is an absolute minima for Θ.
2. Now, let γ be a non-constant curvature critical curve.
Take $p = \frac{1}{2}$ in the p-Elastic energy, that is,

$$\Theta(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} = \int_{0}^{L} \sqrt{\kappa(s) - \mu} \, ds.$$

1. If $\kappa = \mu$ then γ is an absolute minima for Θ.
2. Now, let γ be a non-constant curvature critical curve. Then,

$$\kappa(s) = \frac{4d}{1 + 16d^2s^2},$$

for every $d > 0$ if $\mu = 0$.
Extended Blaschke’s Energy

Take $p = \frac{1}{2}$ in the p-Elastic energy, that is,

$$
\Theta(\gamma) := \int_\gamma \sqrt{\kappa - \mu} = \int_0^L \sqrt{\kappa(s) - \mu} \, ds .
$$

1. If $\kappa = \mu$ then γ is an absolute minima for Θ.
2. Now, let γ be a non-constant curvature critical curve. Then,

$$
\kappa(s) = \frac{4d}{1 + 16d^2 s^2} ,
$$

for every $d > 0$ if $\mu = 0$. Or, if $\mu \neq 0$,

$$
\kappa(s) = \frac{2\mu(\omega^2 + \omega \sin 2\mu s)}{1 + \omega^2 + 2\omega \sin 2\mu s} ,
$$

where $\omega^2 = 1 + \frac{\mu}{d}$.
Case $\kappa = \mu$.

Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.
- If $\mu \neq 0$ and $\omega > 1$, they are undularies.
Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.
Delaunay Curves

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.
- If $\mu \neq 0$ and $\omega > 1$, they are undularies.
Delaunay Curves

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.
Delaunay Curves

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
Delaunay Curves

Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.

For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.
Case $\kappa = \mu$. Critical curves are either lines ($\mu = 0$) or circles. They are roulettes of conic foci.
For the critical curves with non-constant curvature we have

Geometric Characterization [2]

Non-constant curvature critical curves for the extended Blaschke’s energy in \mathbb{R}^2 are, precisely, the roulettes of conic foci with non-constant curvature.

- If $\mu = 0$, we have catenaries.
- If $\mu \neq 0$ and $\omega < 1$, they are nodaries.
- If $\mu \neq 0$ and $\omega > 1$, they are undularies.
In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3.
In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3.

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.
In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3.

Delaunay Surfaces

A rotational surface has constant mean curvature, if and only if, its profile curve is the roulette of a conic.

Characterization of Delaunay Surfaces [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke’s energy as initial condition.
In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC surfaces in \mathbb{R}^3.

Characterization of Delaunay Surfaces [2]

A Delaunay surface is, precisely, a binormal evolution surface with a critical curve for the extended Blaschke’s energy as initial condition. Moreover, the constant mean curvature is given by

$$H = -\mu.$$

4. R. López and A. Pámpano, Classification of Rotational Surfaces in Euclidean Space Satisfying a Linear Relation Between their Principal Curvatures, submitted.
Acknowledgements: Research partially supported by MINECO-FEDER, MTM2014-54804-P and by Gobierno Vasco, IT1094-16.