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Summary. The physiological function of Al in plants is controversial. This
metal injury or toxicity is often related to field crops grown in acid soils with
high availability of Al. Acid soils having pH below 5 increases the solubility
of Al, which in subsoils is particularly harmful because it causes shallow root-
ing, drought susceptibility, and poor use of subsoil nutrients lowering the
production of maize crops. In this overview the modulation of excess Al in
maize is analysed following an integrated approach that characterises the:
(i) interaction of Al with root growth; (ii) threshold of Al toxicity; (iii) interac-
tions with other nutrients accumulation; (iv) reduction mechanisms of nitrate
into ammonia; (v) modulation of photosynthesis; (vi) senescence processes
coupled to ethylene production. These parameters are also compared with
the general knowledge of Al interactions in plant physiology.

Key Words: Al toxicity; ethylene production; nitrate reduction; nutrients
accumulation; photosynthesis; oxy radicals

Abbreviations: ACC – 1-aminocyclopropane-1-carboxylic acid; CuZnSOD
– Cu,Zn-superoxide dismutase; EFE – ethylene forming enzyme; φe –
(=Fv/Fm.qP) estimation of quantum yield of non-cyclic electron transport;
FBPase – fructose–1,6-bisphosphatase; Fm – maximum fluorescence; Fo –
minimum or basal fluorescence; Fv – variable fluorescence; gs – stomatal
conductance; LHC – light harvesting complex; NADP-ME – NADP-malic
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enzyme; NADP-MDH – NADP-malate dehydrogenase; OAA; PCR –  photo-
synthetic carbon reduction; PEP – phosphoenolpyruvate; PEPc – phospho-
enolpyruvate carboxylase; PN – net photosynthetic rate; PPDK –  pyruvate
Pi dikinase; PS – photosystem; qE – energy dependent quenching; qN – non-
photochemical quenching; qP – photochemical quenching; SAM – S-adenos-
ylmethionine; SOD – superoxide dismutase.

Introduction

Maize is a coarse annual grass that ranks second, following wheat, in the world produc-
tion of cereal crops. In the world the total area devoted to maize is higher than 129
million hectares, corresponding to 470 million tonnes of maize grain. This high pro-
duction per hectare reflects the widespread use of hybrids and improved crop manage-
ment practices. However, the recognized adaptability of maize crop is clearly associat-
ed to a wide range of environmental conditions. This species is adapted to such a wide
range of climates that this plant is now more extensively distributed over the earth
than any other cereal crop. It grows from 48oN to about 40oS latitude all over the world.
Similarly, it grows from below sea level to altitudes of about 4000 metres. The ideal
soil for maize is a deep, medium-textured, well-drained, fertile soil with a high water-
holding capacity, but it also grows on a wide variety of soils giving high yields if the
crop is well managed. This plant specie prefers soils having a pH ranging between
5.5 and 8.0, the optimum range being 5.5 to 7.0, but if it is cultivated in soils having
a pH below 5 with high content of Al sulphate, the yield becomes sharply affected.
As one of the main constituents of the earth’s crust, Al in rocks commonly ranges from
0.45 to 10%. The total Al content in soils is inherited from parent rocks, however,
only the fraction of Al that is easily mobile and exchangeable plays an important role
in soil fertility. The available Al in acid soils can be taken up rapidly by plants resulting
in a chemical stress. Indeed, Al toxicity is a severe impediment in production of many
crops in acid soil. Toxicity can be reduced through lime application by raising soil
pH, however this amendment does not remedy subsoil acidity, and liming may not
always be practical or cost-effective. This review sums up the general knowledge of
these nutrient interactions during growth.

Al toxicity and root growth

High Al concentrations are particularly difficult to interpret in terms of physiological
responses. A high proportion of Al in the nutrient growth medium might become inert
by precipitation (e.g., with phosphate) or by polymerisation and complexation. Thus,
the concentration of free Al promoting toxicity in plant metabolism can be much lower
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than that existing in the growth medium (Mengel and Kirkby, 1987). Low concentra-
tions of Al can also lead to a stimulation of root growth in tolerant genotypes of Zea
mays L. (Clark, 1977) due to an increasing activity of the apical meristem (Bennet
and Breen, 1989).

In non-accumulators plant species the negative effects of Al on plant growth
prevail in soils with low pH (Marschner, 1995), the reduction in root growth being
the most serious consequence (Foy, 1983; Lidon and Barreiro, 1998; Calba et al., 1999;
Tabuchi and Matsumoto, 2001). This symptom of Al toxicity (Kerridge and Kronstad,
1968; Henning, 1975; Lee and Pritchard, 1984; Simon et al., 1994) has been related
to the linkage of Al to carboxylic groups of pectins in root cells (Klimashevsky and
Dedov, 1975) or to the switching of cellulose synthesis into callose accumulation
(Teraoka et al., 2002), to Al inhibition of mitosis in the root apex (Rengel, 1992; Del-
haize and Ryan, 1995; Liu and Jiang, 2001) implicating blockage of DNA synthesis
(Horst et al., 1983), aberration of chromosomal morphology and structure (Liu and
Jiang, 2001) occurrence of anaphase bridges and chromosome stickness (Liu and Jiang,
2001) and to Al-induced programmed cell death in the root-tip triggered by reactive
oxygen species (Pan et al., 2001).

Aluminum toxicity has also been associated with Al3+ and AlOH2+ dominant ionic
Al species (Moore, 1974). However, Al toxicity is greater at pH 4.5 than at pH 4.0
since AlOH2+ concentration is about twice as high as that at pH 4.0 (Moore, 1974).
Indeed, at pH 4.5 the dissolution of Al(OH)3 into Al3+ and AlOH2+ is higher because
it gives rise to AlOH2+, which is a soluble Al form highly toxic to plants. This process
eventually is coupled to the inhibition of some protein kinases in Coffea arabica (Mar-
tinez-Estevez et al., 2001).

According to Comin et al. (1999) tolerant cultivars of Zea mays L. have different
toxicity mechanisms, following monomeric or polymeric forms of Al supplied to the
growth medium. Aluminum can easily polymerise, transforming the monomeric form
(Al3+) into a polymeric form (Al13), which is much more phytotoxic in maize (Bell
and Edwards, 1986). Yet, although Rayburn et al. (1993) had noticed Al nucleotypic
effects on maize, a lack of nuclear DNA content variability was found among wheat
isolines differing in Al response (Wetzel et al., 1999) as well as four genes that ameliorate
Al toxicity (Ezaki et al., 2001). Indeed, the general responses to Al excess by tolerant
genotypes deal with the varying ability of plants to modify the pH of the soil-root inter-
face (Mengel and Kirkby, 1987; El-Shatnawi and Makhadmeh, 2001). Cation uptake
might exceed anion absorption leading to the excretion of H+ by the roots, lowering
the pH in the surrounding environment. Al3+-dependent efflux of malate from root
apices is also a mechanism for Al3+ tolerance in wheat. The malate anions protect the
sensitive root tips by chelating the toxic Al3+ cations in the rhizosphere to form non-
toxic complexes (Zhang et al., 2001). Evidence exists that the difference in Al3+-induced
malate efflux between Al3+-tolerant and Al3+-sensitive genotypes lies in the differing
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capacity for Al3+ to activate malate permeable channels and cation channels for sus-
tained malate release (Zhang et al., 2001). Additionally, it has also been suggested
(Osawa and Matsumoto, 2001) that protein phosphorylation is involved in the Al-res-
ponsive malate efflux in the wheat root apex and that the organic anion-specific chan-
nel might be a terminal target that responds to Al signalling mediated by phosphoryla-
tion. Tolerant mechanisms have further been related either to higher uptake rate of
NO3

– in the presence of additional supply NH4
+, either to the exclusion of excess Al.

The increase of the ionic strength of the growth medium as well as the Al activity,
might stimulate the rate of this metal adsorption by roots and its precipitation at the
outer surface of cortical cells (Pavan and Bingham, 1982). Thus, as Al has reduced
mobility and a consequent low bioavailability in tolerant cultivars, higher Al concen-
trations are required in the growth medium. Prior to the development of toxicity symp-
toms, this metal penetration in the plasmalemma of meristematic root cells is blocked
because of Al accumulation in the apoplasm. After inducing the alteration of plasma
membrane permeability (Ishikawa et al., 2001), inside the cell Al is equally harmful.
Aluminium detoxification by chelation can also be developed through excretion organic
acids and polyphenols to the rhizosphere (Kayama, 2001; Tesfaye et al., 2001), even-
tually implicating the alteration of Mg and Ca levels (Silva et al., 2001; Yang et al.,
2001). Yet, although secretion of organic acids and phosphate by root apices and alkal-
inization of the apical rhizosphere are commonly believed to be important mechanisms
of Al resistance, it was found (Menosso et al., 2001; Wenzl et al., 2001) that root apices
of signalgrass secreted only moderately large quantities of organic acids (being efflux
from signalgrass apices three to 30 times smaller than from apices of Al-resistant geno-
types of buckwheat and maize).

Threshold of Aluminum Toxicity and Interactions on Nutrient Accumulation

To accurately define the threshold toxicity of elements, a dose response curve relating
growth to the concentration of nutrient solutions has long been recognised as an accurate
criterion (Ulrich, 1952). The assumption of this model is that critical tissue concentra-
tions of nutrients are usually nearly constant because of limited nutrient supply, but
toxic concentrations may cause unlimited passive nutrient uptake even through normal
growth may have stopped (Berry, 1977; Berry and Wallace, 1989). A dose response
curve relating root elongation to Al concentration during maize growth has pointed out
that Al concentrations higher then 9 mg/L triggers increasing toxicity (Lidon and Bar-
reiro, 1998). Besides the application of a dose response curve, the characterisation
of a nutrient accumulation curve, relating total nutrient accumulation in plant tissues
to its concentration in an external growth solution has also been adopted as a final
diagnostic criterion to determine potential phytotoxicity. In this context, Al concentra-
tion value of ca 13 µg/g (DW) has been reported for maize (Ulrich, 1952; Lidon and
Barreiro, 1998).
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Several authors reported that in maize roots tissues excess Al affects the distribu-
tion of other nutrients (Tanaka and Nasero, 1966; Sivasubramaniam and Talibuden,
1971; Foy, 1978; Dehaize and Ryan, 1995; Ozaki, 2001). In non stressed maize roots,
the concentration values of N, P, K, Ca, Mg, Mn, Fe and Zn are (in mg/g[dw]) ca.
12.5, 6, 4, 2.5, 5.5, 0.03, 0.4 and 0.04, respectively. Moreover, Al toxicity triggers
an increasing accumulation of K, Mn and Zn in the roots while the concentration of
Fe decreases (Furlani and Clark, 1981; Simon et al., 1994; Lidon et al., 2000). This
pattern is quite different from that found in xenopus because in this species Al enters
in plant cells through a Ca2+ channel-like pathway and inhibits K+ uptake by internally
blocking K+ channels (Liu and Luan, 2001). In maize, the concentration of N is only
slightly affected (Lidon et al., 2000). Different plant species grown with high levels
of Al usually have lower P, Ca and Mg contents but in maize a clear trend usually
can not be found (Rengel, 1992; Simon et al., 1994; Lidon et al., 2000). This charac-
teristic seems to implicate that gene encoding resistance to Al excess triggered by the
breaking of Ca homeostasis found in wheat (Sasaki et al., 2002), yet this does not
seem to occur in the maize. In non stressed maize shoots, the concentration values of
N, P, K, Ca, Mg, Mn, Fe and Zn were (in mg/g [DW]) ca. 18, 5, 6, 3.5, 3.5, 0.04,
0.05 and 0.05, respectively, but toxic Al concentrations decreased significantly the con-
centrations of N, Mg, P and Fe (Clark et al., 1981; Furlani and Clark, 1981; Alva and
Edwards, 1990; Simon et al., 1994; Lidon et al., 1999), whereas an opposite trend
prevails with Mn (Lidon et al., 1999). A similar pattern can be found in triticale (Quartin
et al., 2001) and Quercus (Akaya and Takenaka, 2001), being hypothesized that P defici-
ency specifically triggers the reduction of biomass production. Nevertheless, consider-
ing that in Melastona malabathricum high Al levels seem to be the primarily cause
of growth (Watanabe and Osaki, 2001), some controversy remains on this subject.

Nitrate Uptake and Reduction

Depending on plant species, Al mediates the inhibition or stimulation of nitrate uptake,
following a close link that implicates root acidification capacity and the chemical pro-
perties of membranes permeability (Keljens and van Ulden, 1987; Keljens, 1988;
Klotz and Horst, 1988; Taylor, 1991; Nichol et al., 1993; Lazof et al., 1994; Lorenc-
Plucinska and Ziegler, 1996). In Al stressed maize root acidification capacity and nit-
rate accumulation were inhibited while the electrolytic conductance was stimulated
(Lidon et al., 1998; Ahn et al., 2001). Non-toxic root Al concentrations are associated
with this metal binding in negatively charged sites of the cell walls and at the external
surface of membranes (Rufty et al., 1995), increasing proton extrusion and net nitrate
uptake rate (Kinraid, 1993) or diminishing nitrate efflux (Cakmak and Horst, 1991).
Moreover, in Al treated maize the increasing membrane permeability of the roots is
coupled to a sharp penetration of this metal into the root symplastic areas inhibiting
the root acidification capacity (Durieux et al., 1993; Lazof et al., 1994) and, therefore,
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the modulation of the H+/NO3
– co/transport. Indeed, excess Al resulting from increased

membrane permeability limits the rate of nitrate uptake, possibly through the inhibition
of the activity of nitrate transporters (Simon et al., 1994). In the leaves of Al treated
maize the properties of membrane permeability remained unchanged but nitrate, nitrite
and ammonia concentrations decreased (Lidon et al., 1998). Hence the decreasing ac-
cumulation of nitrate in the leaves is not due to plasma membrane degradation, which
could inhibit nitrate translocation. The kinetics of leaf nitrate and nitrite reductases
also increased significantly in Al treated maize (Lidon et al., 1998), which, according
to Dinev and Stancheva (1993), indicated that in vivo reduction of nitrate to ammonia
was not limited by these enzymes. Eventually, the modulation of nitrate reductase ac-
tivity controls metabolic oscillations implicating concurrent alterations of nitrate con-
centrations (Sanchez and Heldt, 1990), which might restore the initial balance between
nitrate reduction and accumulation. As in maize, the concentrations of nitrite are some-
what complementary to those of nitrate, Al mediated interactions coupled to nitrate ac-
cumulation also control nitrite into ammonia conversion. Indeed, the enzyme kinetics
of nitrate to ammonia conversion follows a cascade inhibition because, as nitrate reduc-
tase activity is limited by a decreasing accumulation of substrate, the related decrease
of nitrite concentrations also becomes a limitation for maximum nitrite reductase func-
tioning and therefore affected the ammonia concentrations (Lidon et al., 1998). Thus,
nitrite reductase activity parallels the Al mediated modulation of nitrate reductase,
further limiting the imbalance between nitrite consumption and accumulation (Lidon
et al., 1998).

Modulation of Photosynthesis

In Al treated maize the rate of the “light” and “dark” photosynthetic reactions are stim-
ulated. This pattern is specific for maize because it is long recognized that this metal
toxicity specifically inhibits the photosynthetic apparatus of many species (McLean,
1979; Cambraia and Calbo, 1980; Foy, 1984; Haug, 1984; Ohki, 1986; Moustakas and
Ouzounidou, 1994; Lorenc-Pblucinska and Ziegler, 1996; Akaya and Takenaka, 2001).
The structure and organisation of chloroplasts from Al treated maize are coupled to
non-significant alterations of Fo and Fv/Fm, which indicates that the energy transfer
from the LHCII was not inhibited (Lidon et al., 1999). This pattern is somewhat similar
to that reported for other plants, namely for Quercus (Akaya and Takenaka, 2001).
Thus, the yield of fluorescence emission of Chl a, before the excitons have migrated
to the reactions centres (Krause and Weis, 1991), is independent of photochemical
events (Krause and Weis, 1984) or of both the initial density of excitons within the
PSII pigments (Lichtenthaler, 1988), and of structural conditions that could affect the
probability of excitation energy transfer between antenna pigments and reaction cen-
tres of PSI and PSII (Prange, 1986). In fact, the maintenance of the Fv/Fm ratio com-
bined with the stabilisation of Fo suggests the presence of regulatory mechanisms act-
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ing in the antennae (Krause, 1988) that shield against impairments, implicating the
inactivation of PSII (Franklin et al., 1992). Toxic Al concentrations also triggered only
minor effects on qE, qN and qP of maize chloroplasts (Lidon et al., 1997b), indicating
that the rate of utilisation/dissipation of excitation energy by PSII was not inhibited.
Additionally, a similar tendency occurs with the proportion of excitation energy trap-
ped in the open centres of PSII (Horton and Hague, 1988; Walker, 1988; Krause and
Weis, 1991; Schafer and Schmidt, 1991). These global effects are well expressed by
φe, which sharply increased (Lidon et al., 1998), indicating that the in vivo reducing
power generated by the photosynthetic electron flow was stimulated. The confirmation
of this trend can also be found in isolated thylakoids of Al treated maize because the
rates of the photosynthetic electron transport associated with PSII were stimulated
(Cambraia and Calbo, 1980; Haug, 1984; Lidon et al., 1997b; 1999) and, additionally,
a similar trend was displayed by CO2 assimilation. Moreover, the pattern displayed
by CO2 intake can be interpreted considering that the diffusion of the assimilated CO2
in C4 leaves between bundle sheath and mesophyll cells is highly restricted (Hatch
and Osmond, 1976; Hattersley and Perry, 1984; Hatch, 1987; Weiner et al., 1988; Jen-
kins et al., 1989). Indeed, the development of relatively high CO2 concentrations in
the bundle sheath cells are required during photosynthesis (Hatch and Osmond, 1976;
Edwards and Walker, 1983; Hatch, 1987; Furbank and Hatch, 1987; Furbank et al.,
1989). Following a pattern quite different from the reported for Quercus (Akaya and
Takenaka, 2001), PN and gs were stimulated in Al treated maize (Lidon et al., 1996,
1997b, 1999) yet, starch and soluble saccharide concentrations as well as the FBPase
activity did not vary significantly (Lidon et al., 1997a). This indicates that the carbon
flux necessary for the regeneration of ribulose bisphosphate was preserved. As FBPase
activity is a limiting step in the PCR cycle further controlling saccharide synthesis
(Lawlor, 1987) and hence the rate of saccharide synthesis was unaffected in Al treated
maize, the additional assimilated carbon was exported to the cytosol via a phosphate
translocator in the form of triose/P produced by the assimilatory segment of the PCR
cycle (Geiger and Servaites, 1994). In the NADP-ME type enzymatic system coupled
to mesophyll and bundle sheath cells of maize the developed in increasing Al concen-
trations, although inhibiting the activity of NADP-MDH, stimulated the kinetics of
PPDK, NADP/ME and PEPc (Lidon et al., 1997a). The inhibition of NADP-MDH
activity limits maximum activities of NADP-ME, PPDK and PEPc. As PPDK was
activated by high ratios of ATP/ADP and pyruvate/PEP in the mesophyll cells (Ed-
wards et al., 1985), the important regulatory role advanced for this enzyme kinetics
in the regeneration of PEP (Andrews and Hatch, 1969) was also inhibited in maize.
Nevertheless, the increased CO2 uptake in the mesophyll cells indicates that, OAA
and malate will not accumulate inhibiting PEPc (O´Leary, 1982). Furthermore, the
reaction proceeding towards PEP synthesis will not be inhibited and this will contribute
to maintaining a balance between PEP production and its utilisation in carboxylation
reactions.
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Oxy Radicals Production in the Chloroplasts

Non lethal Al toxicity in maize does not change significantly the relative proportions
of the thylakoid acyl lipids and, additionally, the ratio between total galactolipids or
phospholipids and total acyl lipids remains almost constant (Lidon et al., 1997a).
Nevertheless, thylakoid lipid peroxidation and ethylene production coupled to the
photosynthetic light reactions increase significantly (Lidon et al., 1999) which, as pre-
viously shown with other heavy metals (Rabinowitch and Fridovich, 1983; Gutteridge,
1987; Fernandes and Henriques, 1991; Lidon and Henriques, 1993), reveals an increas-
ing rate for the peroxidative chain reactions in the chloroplasts. In Al-treated maize
phenol concentration also increases, whereas the chloroplast quinone pool decreases
(Lidon et al., 1999). An Al induced phenol accumulation has long been reported (Klim-
ascevskii, 1972), which could be associated with an enhanced generation of active
oxygen forms. Inhibition of SOD in Al-treated maize plants was reported (Lidon et
al., 1999) which may result in an increased level of superoxide free radicals. In Al-treat-
ed maize ascorbate peroxidase activity increases significantly (Lidon et al., 1999).
This is an observation quite similar to previous reports of the interacting effect of Al
excess on peroxidase kinetics (Cakmak and Horst, 1991), yet, maximum activity of
glutathione reductase becomes inhibited, whereas that of dehydroascorbate reductase
was stimulated (Lidon et al., 1999). The Al mediated effect on glutathione reductase
allows the assumption that in vivo this enzyme activity is the limiting step in the
chloroplast peroxidase system of maize (Polle et al., 1980; Cross and Jones, 1991).
Indeed, as the kinetics of glutathione reductase is inhibited, the peroxidase system
has a lower efficiency due to substrate limitations for the required functioning of the
enzymes ascorbate peroxidase and dehydroascorbate reductase. Additionally, catalase
also decreases in Al treated maize (Lidon et al., 1999) and, therefore, the control of
the concentrations of photosynthetically-generated hydrogen peroxide that diffuses
out of the chloroplast also is less effective in the peroxisomes. This inhibition apparent-
ly is related to the decrease of SOD activity, as their synergistic function (Rabinowitch
and Fridovich, 1983) is blocked, further allowing the production of hydroxyl radicals
(Rabinowitch and Fridovich, 1983).

Ethylene Production Through the Methionine Pathway

There have been some conflicting reports about the extent of involvement of ethylene
in leaf senescence. Foliar senescence triggered by ethylene has long been suggested
(Aharoni et al., 1979a,b; Aharoni and Lieberman, 1979; Grodzinski et al. 1982; Kao
and Yang, 1983; Lesham et al., 1986), however since the works of Thomas and Stod-
dart (1980) and Roberts et al. (1984) these results are increasingly being cosidered
with caution. It has also been suggested that leaf senescence, involving ethylene pro-
duction might be retarded by several ions, or by anaerobic conditions (Kao, 1978;
Yu and Kao, 1980; Kao and Yu, 1981). In this context Al toxicity appears to be the
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result of several interactions, and there is no consensus on its mechanisms of action
in higher plants (Hampp and Schnabl, 1975; Jackson et al., 1990).

In Al treated maize ethylene production through the methionine pathway increases
(Lidon et al., 1995), indicating, as previously suggested (Aharoni et al., 1979a,b;
Aharoni and Lieberman, 1979; Grodzinski et al., 1982; Kao and Yang, 1983; Lesham
et al., 1986), a positive correlation with the decreased leaf elongation and biomass
production. ACC synthase activity also increased with non-lethal Al levels, with the
concentration of endogenous ACC showing minimum values in the absence of Al
(Lidon et al., 1995). Thus, in contrast with previous suggestions for different plant
species (Adams and Yang, 1979; Yu et al. 1979; Konze and Kende, 1979; Yu and Yang,
1980; Kende and Boller, 1981) stating that the conversion of SAM to ACC is the step
at which ethylene biosynthesis is regulated, in maize Al did not affect the kinetics of
ACC synthase. The EFE activity showed increasing values with non-lethal Al concen-
trations (Lidon et al., 1995), which further supports that assumption. Nevertheless,
although the participation of chemical elements in the opening of the cyclopropane
ring has been suggested for the chemical oxidation of ACC (Boller et al., 1979; Bald-
win et al., 1985), for the degradation of ACC by free-radical-producing enzymes
(Vioque et al., 1981; Bousquet and Thimann, 1984) and for the production of ethylene
by plant extracts in vitro (Konze and Kwiatowski, 1981), apparently the in vivo activity
of this enzyme complex was not affected by Al treated maize.
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