

GEOMETRY OF MEMBRANES

ZHANCHUN TU

Communicated by Boris Konopeltchenko

Abstract. This review reports some theoretical results on the geometry of membranes. The governing equations to describe equilibrium configurations of lipid vesicles, lipid membranes with free edges, and chiral lipid membranes are derived from the variation of free energies of these structures. Some analytic solutions to these equations and their corresponding configurations are also shown.

Contents

1	Intr	oduction	46	
2	Prel	iminaries in Mathematics and Physics	47	
	2.1	Surface Theory Based on Moving Frame	47	
		2.1.1. Moving Frame Method	47	
		2.1.2. Stokes' Theorem and Related Identities	49	
	2.2	Helfrich's Model	50	
	2.3	Variational Method Based on Moving Frame	51	
3	Lipi	id Vesicles	52	
	3.1	Shape Equation to Describe Equilibrium Configurations	52	
	3.2	Analytic Solutions and Corresponding Configurations	54	
		3.2.1. Surfaces of Constant Mean Curvature	54	
		3.2.2. Torus	55	
		3.2.3. Biconcave Discoid	56	
		3.2.4. Unduloid-Like and Cylinder-Like Surfaces	57	