Geometry, Integrability and Quantization September 1–10, 1999, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2000, pp 159-162

TWISTOR INTEGRAL REPRESENTATIONS OF SOLUTIONS OF THE SUB-LAPLACIAN

YOSHINORI MACHIDA

Numazu College of Technology 3600 Ooka, Numazu-shi Shizuoka 410-8501, Japan

Abstract. The twistor integral representations of solutions of the Laplacian on the complex space are well-known. The purpose of this article is to generalize the results above to that of the sub-Laplacian on the odd-dimensional complex space with the standard contact structure.

Introduction

The twistor integral representations of solutions of the complex Laplacian on the complex space \mathbb{C}^{2n} of even dimension 2n are well-known. We also showed them on \mathbb{C}^{2n-1} of odd dimension 2n-1 before. The purpose of this article is to generalize the results above to that of the complex sub-Laplacian on \mathbb{C}^{2n-1} with the standard contact structure. The details and further discussion will appear elswhere.

Let (x_i, y_i, z) i = 1, ..., n-1 be the standard coordinate system of $\mathbb{M} = \mathbb{C}^{2n-1}$. We give \mathbb{M} a contact structure defind by

$$\theta = \mathrm{d}z - \sum_{i=1}^{n-1} (y_i \,\mathrm{d}x_i - x_i \,\mathrm{d}y_i)$$

called a contact form. The contact distribution D on \mathbb{M} is defined by $\theta = 0$. The vector fields

$$X_i = \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}$$
, $Y_i = \frac{\partial}{\partial y_i} - x_i \frac{\partial}{\partial z}$, $i = 1, \dots, n-1$

furnish a basis of D. Let us join $Z = \frac{\partial}{\partial z}$ to them. By $[Y_i, X_i] = 2Z$; $i = 1, \ldots, n-1$ they form a basis of the Heisenberg algebra.

159