GREEN'S FUNCTION FOR 5D $S U(2)$ MIC-KEPLER PROBLEM

MIKHAIL PLETYUKHOV and EUGENY TOLKACHEV

Institute of Physics, National Academy of Sciences of Belarus Prospect F. Scoryna, 70, 220072 Minsk, Belarus

Abstract

The Green's function for 5-dimensional counterpart of the MIC-Kepler problem (Kepler potential plus $S U(2)$ Yang-Mills instanton plus Zwanziger-like $1 / R^{2}$ centrifugal term) is constructed on the basis of the Green's function for the 8 -dimensional harmonic oscillator.

1. Introduction

Coulomb Green's functions in a n-dimensional Euclidean space have been constructed in [1]. The results for the cases $n=2,3,5$ can be deduced from the oscillator Green's functions in $N=2,4,8$ dimensions due to Levi-Civita, Kustaanheimo-Stiefel [2] and Hurwitz transformations [3], respectively.

Moreover [4], the $N=4$ oscillator representation allows to obtain Green's function for 3-dimensional MIC-Kepler problem [5] (Kepler-Coulomb potential plus $U(1)$ Dirac monopole plus Zwanziger's [6] $1 / R^{2}$ centrifugal term).

In this paper we construct the Green's function for 5-dimensional counterpart of the MIC-Kepler problem [7] (Kepler potential plus $S U(2)$ Yang-Mills instanton plus Zwanziger-like $1 / R^{2}$ centrifugal term). We avoid a tedious procedure of path integration and deduce our result from the well-known expression for the 8 -dimensional oscillator Green's function by exploiting the Hurwitz correspondence between these 5 - and 8 -dimensional problems [7-9].

