Thirteenth International Conference on Geometry, Integrability and Quantization June 3–8, 2011, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2012, pp 107–113

ANALYTIC DESCRIPTION OF THE VISCOUS FINGERING INTERFACE IN A ROTATING HELE-SHAW CELL

PETER A. DJONDJOROV, VASSIL M. VASSILEV, MARIANA TS. HADZHILAZOVA † and IVAÏLO M. MLADENOV †

Institute of Mechanics, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria

[†]Institute of Biophysics, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

Abstract. The determination of the interface shape between two fluids during the process of viscous fingering (Saffman–Taylor instability) in a Hele-Shaw cell is addressed here. The parametric equations describing this interface are obtained in an explicit analytic form. With these results, a number of interface shapes are presented, including shapes with opposite sides in contact that are considered as the onset of droplet pinch-off.

1. Introduction

Viscous fingering (Saffman–Taylor instability [8]) is the formation of patterns in the interface between two fluids in a Hele-Shaw cell. It occurs during injection when a less viscous fluid displaces a more viscous one in planar or non-planar Hele-Shaw cell [7]. It can also occur due to gravity with or without taking into account chemical or thermal effects [1,9] if a horizontal interface separates two fluids of different densities and the heavier fluid is above the other one. A closely related problems appear in the study of the collapse of nanotubes [10] and rings exposed to uniform externed presure [2].

Saffman–Taylor instability also occurs in many other frameworks, e.g. in a Hele–Shaw cell subjected to pressure, radial magnetic field or rotation.

Let the interface be given by means of the coordinates x(s), z(s) in a certain Cartesian coordinate frame in the Euclidean plane with s being the interface arclength. The unit **tangent vector** $\mathbf{t}(s)$ and the unit **normal vector** $\mathbf{n}(s)$ are related to the