Seventeenth International Conference on Geometry, Integrability and Quantization June 5–10, 2015, Varna, Bulgaria Ivaïlo M. Mladenov, Guowu Meng and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2016, pp 172–181 doi: 10.7546/giq-17-2016-172-181

A HARMONIC ENDOMORPHISM IN A SEMI-RIEMANNIAN CONTEXT

CORNELIA-LIVIA BEJAN and ŞEMSİ EKEN †

"Gh. Asachi" Technical University Iasi, Department Mathematics, 11 Carol I Blvd., Corp A, Iasi 700506, Romania [†]Karadeniz Technical University, Department of Mathematics, 61080 Trabzon, Turkey

Abstract. On the total space of the cotangent bundle T^*M of a Riemannian manifold (M, h) we consider the natural Riemann extension \bar{g} with respect to the Levi-Civita connection of h. In this setting, we construct on T^*M a new para-complex structure P, whose harmonicity with respect to \bar{g} is characterized here by using the reduction of \bar{g} to the (classical) Riemann extension.

MSC: 53C07, 53C50, 53B05, 53C43, 58E20

Keywords: Cotangent bundle, harmonic tensor field, natural Riemann extension, semi-Riemannian manifold

1. Introduction

Let M be a connected smooth n-dimensional manifold and let T^*M be its cotangent bundle. We suppose that the manifold M is endowed with a symmetric linear connection ∇ . In [12], Patterson and Walker introduced the (classical) Riemann extension that was generalized by Sekizawa and Kowalski to natural Riemann extension, which is a semi-Riemannian metric of signature (n, n), on the total space of T^*M , (see [14] and [11]). Later, Bejan and Kowalski [5] characterized harmonic functions with respect to the natural Riemann extension \bar{g} on T^*M . Also, the natural Riemann extension is a special class of modified Riemann extensions which is studied in [7] and [10].

Harmonicity is a very interesting topic in some mathematical fields, such as differential geometry, analysis, partial differential equations, theoretical physics and so on. We recall that a C^2 - map $\varphi : (N,h) \to (\bar{N},\bar{h})$ between (semi-)Riemannian