LOCAL AND NON-LOCAL CONSERVATION LAWS FOR QUADRATIC CONSTRAINED LAGRANGIANS AND APPLICATIONS TO COSMOLOGY

NIKOLAOS DIMAKIS
Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile 5090000 Casilla 567 Valdivia, Chile

Abstract

We study the existence of conservation laws in constrained systems described by quadratic Lagrangians; the type of which is encountered in mini-superspace cosmology. As is well known, variational symmetries lead to conserved quantities that can be used in the classical and quantum integration of a system. Additionally - and due to the parametrization invariance of such Lagrangians - conditional symmetries defined on phase space can lead to non-local integrals of motion. The latter may be of importance in various cosmological configurations. As an example we present the case of scalar field cosmology with an arbitrary potential.

MSC: 70H45, 70H06, 70G65
Keywords: Conditional symmetries, constrained systems, mini-superspace cosmology

1. Introduction

Symmetries at both the classical and the quantum level are of utmost importance in many physical theories. The same is also true for cosmology, especially in the context of a mini-superspace approximation. That is, when there can be constructed an equivalent mechanical system which exhibits the same dynamical evolution as the gravitational one. There is a series of works that deal with symmetries of these systems and how they are used to derive solutions or constrain the theory under consideration $[2,12,13,15]$. When a mini-superspace approximation is adopted a constrained (or singular) system is obtained, meaning that not all of the equations of motion are independent. Usually, in the literature, a particular gauge fixing condition is being applied so as to treat these Lagrangians as regular. However,

