Nineteenth International Conference on Geometry, Integrability and Quantization June 02–07, 2017, Varna, Bulgaria Ivaïlo M. Mladenov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2018, pp 66–74 doi: 10.7546/giq-19-2018-66-74

ON HYPER GENERALIZED WEAKLY SYMMETRIC MANIFOLDS

KANAK K. BAISHYA, FÜSUN ZENGIN † and JOSEF MIKEŠ ‡

Department Of Mathematics, Kurseong College, Darjeeling-734203 West Bengal, India

[†]Department of Mathematics, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul, Turkey

[‡]Department of Algebra and Geometry, Faculty of Science, Palacky University 17 Listopadu 12, 771 46 Olomouc, Czech Republic

Abstract. This paper aims to introduce the notion of hyper generalized weakly symmetric manifolds with a non-trivial example.

MSC: 53C15, 53C25 *Keywords*: hyper generalized weakly symmetric manifolds

1. Introduction

The notion of weakly symmetric Riemannian manifold has been introduced by Tamássy and Binh [23]. Thereafter, it becomes focus of interest for many geometers. For details, we refer to [6], [9], [10], [12], [17], [19–21], [2] and the references there in.

In the spirit of [23], a non flat Riemannian manifold $(M^n, g)(n > 2)$, is said to be weakly symmetric manifold, if its curvature tensor \overline{R} of type (0, 4) is not identically zero and satisfies the identity

$$(\nabla_X \bar{R})(Y, U, V, W) = A(X)\bar{R}(Y, U, V, W) +B(Y)\bar{R}(X, U, V, W) + B(U)\bar{R}(Y, X, V, W)$$
(1)
+D(V) $\bar{R}(Y, U, X, W) + D(W)\bar{R}(Y, U, V, X)$

where A, B & D are non-zero one-forms defined by $A(X) = g(X, \sigma_1), B(X) = g(X, \pi_1)$ and $D(X) = g(X, \partial_1)$, for all X and $\overline{R}(Y, U, V, W) = g(R(Y, U)V, W)$,