Nineteenth International Conference on Geometry, Integrability and Quantization June 02–07, 2017, Varna, Bulgaria Ivaïlo M. Mladenov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2018, pp 122–131 doi: 10.7546/giq:19-2018-122-131

QUANTIZATION OF LOCALLY SYMMETRIC KÄHLER MANIFOLDS

KENTARO HARA and AKIFUMI SAKO[†]

Department of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

[†]Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract. We introduce noncommutative deformations of locally symmetric Kähler manifolds. A Kähler manifold M is said to be a locally symmetric Kähler manifold if the covariant derivative of the curvature tensor is vanishing. An algebraic derivation process to construct a locally symmetric Kähler manifold is given. As examples, star products for noncommutative Riemann surfaces and noncommutative \mathbb{CP}^N are constructed.

MSC: 53D55, 81R60

Keywords: Deformation quantization, locally symmetric Kähler manifolds, noncommutative geometry, noncommutative Riemann surfaces

1. Review of the Deformation Quantization with Separation of Variables

In this section, we review the deformation quantization with separation of variables to construct noncommutative Kähler manifolds.

An N-dimensional Kähler manifold M is described by using a Kähler potential. Let Φ be a Kähler potential and ω be a Kähler two-form

$$\omega := \mathrm{i}g_{k\bar{l}}\mathrm{d}z^k \wedge \mathrm{d}\bar{z}^l, \qquad g_{k\bar{l}} := \frac{\partial^2 \Phi}{\partial z^k \partial \bar{z}^l} \tag{1}$$

where $z^i, \bar{z}^i \ (i = 1, 2, ..., N)$ are complex local coordinates.

In this article, we use the Einstein summation convention over repeated indices. The $g^{\bar{k}l}$ is the inverse of the Kähler metric tensor $g_{k\bar{l}}$. That means $g^{\bar{k}l}g_{l\bar{m}} = \delta_{\bar{k}\bar{m}}$.