Nineteenth International Conference on Geometry, Integrability and Quantization June 02–07, 2017, Varna, Bulgaria Ivaïlo M. Mladenov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2018, pp 188–192 doi: 10.7546/giq-19-2018-188-192

BIFURCATION OF CLOSED GEODESICS

LENKA RÝPAROVÁ and JOSEF MIKEŠ

Department of Algebra and Geometry, Faculty of Science, Palacký University 771 46 Olomouc, Czech Republic

Abstract. This paper is denoted to further study of geodesic bifurcation on surfaces of revolution. We demonstrate an example of bifurcation of closed geodesics on surfaces.

MSC: 53A05, 53C22 *Keywords*: Geodesic, geodesic bifurcation, (pseudo-)Riemannian space, surfaces of revolution

1. Introduction

Geodesics are special curves that play important role in differential geometry. These curves were studied in many works, see [1-3, 5, 6, 8, 10].

We studied geodesic bifurcations in our paper [9]. Here, we describe problem about geodesics. We found and example of geodesic bifurcation on certain surface of revolution. We explain the term bifurcation as a situation when at least two different geodesics go through the given point in the given direction.

This term was also used but with a different meaning, see [11]. There, geodesic bifurcation is understood as situation when more geodesic go through given point but do not have the same tangent vector.

The result of our study is a construction of surface of revolution where exist closed geodesics which admit above described geodesic bifurcation.

2. Geodesics

Let (M, ∇) be a manifold M with affine connection ∇ . In local chart (U, x) the connection ∇ is defined with its components $\Gamma_{ii}^h(x)$.