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Abstract. We discuss deformation quantization in quantum mechanics
and quantum field theory. We begin with a discussion of the mathemat-
ical question of deforming the commutative algebra of functions on a
manifold into a non-commutative algebra by use of an associative pro-
duct. We then apply these considerations to the commutative algebra of
observables of a classical dynamical system, which may be deformed
to the non-commutative algebra of quantum observables. This is the
process of deformation quantization, which provides a canonical pro-
cedure for finding the measurable quantities of a quantum system. The
deformation quantization approach is illustrated, first for the case of a
simple harmonic oscillator, then for an oscillator coupled to an external
source, and finally for a quantum field theory of scalar bosons, where
the well-known formula for the number of quanta emitted by a given
external source in terms of the Poisson distribution is reproduced.
The relation of the star product method to the better-known methods
involving the representation of observables as linear operators on a
Hilbert space, or the representation of expectation values as functional
integrals, is analyzed. The final lecture deals with a remarkable formula
of Cattaneo and Felder, which relates Kontsevich’s star product to an
expectation value of a product of functions on a Poisson space, and
indicates how this formula may be interpreted.

1. Introduction

One may distinguish three main approaches to understanding quantum me-
chanics (for a more detailed analysis see Styeret al [41]). In chronological
order the first is the operator formalism, in which physical states are repre-
sented as vectors in a Hilbert space, and observables as linear operators on
the states. The measurable quantities are the matrix elements of the operators
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