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Abstract. Equivariant cohomology in general and the equivariant lo-
calization theorems in particular have taken on a role of increasing
significance in theoretical physics of late (see e. g. [3], [4] and [10]).
These lectures are an attempt to provide a self-contained and elemen-
tary introduction to the Cartan model of equivariant cohomology, a
complete proof of the simplest of the localization theorems, and, as an
application, a proof of the famous Duistermaat–Heckman theorem on
exact stationary phase approximations.

1. Stationary Phase Approximation

We consider a compact, oriented, smooth manifoldM of dimensionn = 2k
and denote byν a volume form onM . SupposeH : M → R is a Morse
function onM , i. e., a smooth function whose critical pointsp (dH(p) = 0)
are all nondegenerate (this means that the HessianHp : Tp(M)×Tp(M) → R,
defined byHp(Vp,Wp) = Vp(W (H)), whereVp,Wp ∈ Tp(M) andW is a
vector field onM with W (p) = Wp, is a nondegenerate bilinear form). Finally,
let T denote some real parameter. We consider the integral

∫
M

eiTHν (1.1)

and are especially interested in its asymptotic behavior asT → ∞. The Sta-
tionary Phase Theorem (Chapter I of [6]) asserts roughly that, for largeT , the
dominant contributions to such an integral come from the critical points ofH.
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