COMPRESSED PRODUCT OF BALLS AND LOWER BOUNDARY ESTIMATES ON BERGMAN KERNELS

AZNIV KASPARIAN

Department of Mathematics and Informatics, "St Kliment Ohridski" University 5 James Bourchier Blvd, 1126 Sofia, Bulgaria

Abstract

The image $B_{p^{\sigma}, q}$ of a product of balls $B_{p} \times B_{q}$ under a compression $c_{\sigma}(X, V)=\left(X, V\left(1-{ }^{t} \bar{X} X\right)^{\frac{\sigma}{2}}\right)$ is called a compressed product of balls of exponent $\sigma \in \mathbb{R}$. The present note obtains the group $\operatorname{Aut}\left(B_{p^{\sigma}, q}\right)$ of the holomorphic automorphisms and the $\operatorname{Aut}\left(B_{p^{\sigma}, q}\right)$ orbit structure of $B_{p^{\sigma}, q}$ and its boundary $\partial B_{p^{\sigma}, q}$ for $\sigma>1$. The Bergman completeness of $B_{p^{\sigma}, q}$ is verified by an explicit calculation of the Bergman kernel. As a consequence, local lower boundary estimates on the Bergman kernels of the bounded pseudoconvex domains are obtained, which are locally inscribed in $B_{p^{\sigma}, q}$ at a common boundary point.

For a strictly pseudoconvex domain $\mathcal{D}=\left\{z \in \mathbb{C}^{n} ; \rho(z)<0\right\}$ with a smooth boundary, Fefferman [6] and Boutet de Monvel-Sjöstrand [2] have expanded the diagonal values $k_{\mathcal{D}}(z):=k_{\mathcal{D}}(z, z)$ of the Bergman kernel in the form $k_{\mathcal{D}}(z)=\varphi_{\mathcal{D}}(\rho) \rho^{-n-1}+\psi_{\mathcal{D}}(\rho) \log (-\rho)$, where $\varphi_{\mathcal{D}}(\rho)$ and $\psi_{\mathcal{D}}(\rho)$ are power series in the defining function $\rho=\rho(z)$.
Only few results are known for the boundary behavior of the Bergman kernel of a weakly pseudoconvex domain. For arbitrary $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ let $\mathcal{E}_{m}:=\left\{z \in \mathbb{C}^{n} ; \rho_{m}(z)=\sum_{j=1}^{n}\left|z_{j}\right|^{2 m_{j}}-1<0\right\}, z^{o} \in \partial \mathcal{E}_{m}$,

$$
P_{m}:=\left\{j \in \mathbb{N} ; z_{j}^{o}=0 \text { and } m_{j}>1\right\}, \quad Q_{m}:=\left\{j \in \mathbb{N} ; z_{j}^{o} \neq 0 \text { or } m_{j}=1\right\} .
$$

Kamimoto has established in [11] the existence of an open subset $U \subset \mathbb{C}^{n}$ with $z^{o} \in \partial U$ and a real analytic function $\Phi_{m}: U \rightarrow\{r \in \mathbb{R} ; r>0\}$, such that $k_{\mathcal{E}_{m}}(z)=\Phi_{m}(z) \rho_{m}(z)^{-\sum_{j \in P_{m}} m_{j}^{-1}-\operatorname{card} Q_{m}-1}$ on U. If $P_{m}=\emptyset$ then $\Phi_{m}(z)$ is bounded around z^{o}, while $\lim _{z \rightarrow z^{o}} \Phi_{m}(z)=\infty$ for $P_{m} \neq \emptyset$.

