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Abstract. In this paper we study harmonic forms on compact symplec-
tic nilmanifolds. We consider harmonic cohomology groups of dimen-
sion 3 and of codimension 2 for 2-step nilmanifolds and give examples
of compact 2-step symplectic nilmanifoldsG/Γ such that the dimension
of harmonic cohomology groups varies.

1. Introduction

Let (M,G) be a Poisson manifold with a Poisson structureG, that is, a skew-
symmetric contravariant 2-tensorG on M satisfying [G,G] = 0, where [ , ]
denotes the Schouten-Nijenhuis bracket. For a Poisson manifold(M,G),
Koszul [5] introduced a differential operatord∗ : Ωk(M) → Ωk−1(M) by
d∗ = [d, i(G)], whereΩk(M) denotes the space of allk-forms on M . The
operatord∗ is called theKoszul differential . For a symplectic manifold
(M2m, ω), let G be the skew-symmetric bivector field dual toω. Then
G is a Poisson structure onM . Brylinski [1] defined the star operator
∗ : Ωk(M) → Ω2m−k(M) for the symplectic structureω as an analogue of the
star operator for an oriented Riemannian manifold and proved that the Koszul
differential d∗ satisfiesd∗ = (−1)k ∗ d∗ on Ωk(M) and the identity∗2 = id.
A form α on M is calledharmonic form if it satisfies dα = d∗α = 0. Let
Hk

ω(M) = Hk(M) denote the space of all harmonick-form on M . Brylinski
[1] defined symplectic harmonick-cohomology groupHk

ω-hr
(M) = Hk

hr(M)
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