HARMONIC FORMS ON COMPACT SYMPLECTIC 2-STEP NILMANIFOLDS

YUSUKE SAKANE^{\dagger} and TAKUMI YAMADA^{\ddagger}

[†] Department of Pure and Applied Mathematics Graduate School of Information Science and Technology Osaka University, Toyonaka, Osaka, 560-0043, Japan

[‡] Department of Mathematics Graduate School of Science Osaka University, Toyonaka, Osaka, 560-0043, Japan

Abstract. In this paper we study harmonic forms on compact symplectic nilmanifolds. We consider harmonic cohomology groups of dimension 3 and of codimension 2 for 2-step nilmanifolds and give examples of compact 2-step symplectic nilmanifolds G/Γ such that the dimension of harmonic cohomology groups varies.

1. Introduction

Let (M, \mathbf{G}) be a Poisson manifold with a Poisson structure \mathbf{G} , that is, a skewsymmetric contravariant 2-tensor \mathbf{G} on M satisfying $[\mathbf{G}, \mathbf{G}] = 0$, where [,]denotes the Schouten-Nijenhuis bracket. For a Poisson manifold (M, \mathbf{G}) , Koszul [5] introduced a differential operator $d^* \colon \Omega^k(M) \to \Omega^{k-1}(M)$ by $d^* = [d, i(\mathbf{G})]$, where $\Omega^k(M)$ denotes the space of all k-forms on M. The operator d^* is called the **Koszul differential**. For a symplectic manifold (M^{2m}, ω) , let \mathbf{G} be the skew-symmetric bivector field dual to ω . Then \mathbf{G} is a Poisson structure on M. Brylinski [1] defined the star operator $*: \Omega^k(M) \to \Omega^{2m-k}(M)$ for the symplectic structure ω as an analogue of the star operator for an oriented Riemannian manifold and proved that the Koszul differential d^* satisfies $d^* = (-1)^k * d^*$ on $\Omega^k(M)$ and the identity $*^2 = id$. A form α on M is called **harmonic form** if it satisfies $d\alpha = d^*\alpha = 0$. Let $\mathcal{H}^k_{\omega}(M) = \mathcal{H}^k(M)$ denote the space of all harmonic k-form on M. Brylinski [1] defined symplectic harmonic k-cohomology group $\mathcal{H}^k_{\omega-hr}(M) = \mathcal{H}^k_{hr}(M)$