EXACTLY SOLVABLE PERIODIC DARBOUX q-CHAINS

SERGEY SMIRNOV

Department of Higher Geometry and Topology, Moscow State University Vorobévy Gory, 119992, Moscow, Russia

Abstract. A difference *q*-analogue of the dressing chain is considered in this paper. The relation between the discrete and continuous models is also discussed.

1. Introduction

Let L_1, L_2, \ldots be self-adjoint differential operators acting on \mathbb{R} . They form a **Darboux chain** if they satisfy the relation

$$L_j = A_j A_j^+ - \alpha_j = A_{j-1}^+ A_{j-1} \tag{1}$$

where $A_j = -\frac{d}{dx} + f_j(x)$ are first order differential operators. A Darboux chain is called **periodic** if $L_{j+r} = L_j$ for some r and for all $j = 1, 2, \ldots$. The number r is called period of a Darboux chain. In the particular case r = 1 the operator $L_1 + \frac{\alpha}{2}$ appears to be the harmonic oscillator and it is known that it has a discrete spectrum consisting of the geometric sequence $\lambda_k = \frac{2k+1}{2}\alpha$, where $k = 1, 2 \ldots$. Eigenfunctions of the harmonic oscillator are expressed in terms of the Hermite polynomials and therefore they form a complete family in the Hilbert space $\mathcal{L}_2(\mathbb{R})$.

Periodic Darboux chain leads to the following integrable system of differential equations:

$$(f_j + f_{j-1})' = f_j^2 - f_{j-1}^2 - \alpha_j, \qquad j = 1, 2, \dots$$
 (2)

where $f_{j+r} \equiv f_j$. Sometimes this system is referred to as **dressing chain** which has been thoroughly examined in [8]. The cases $\alpha = 0$ and $\alpha \neq 0$, where $\alpha = \sum_{j=1}^{r} \alpha_j$, are cardinally different. The operators of a periodic