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EXACTLY SOLVABLE PERIODIC DARBOUX q-CHAINS

SERGEY SMIRNOV
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Vorobévy Gory, 119992, Moscow, Russia

Abstract. A differenceq-analogue of the dressing chain is considered
in this paper. The relation between the discrete and continuous models
is also discussed.

1. Introduction

Let L1, L2, . . . be self-adjoint differential operators acting onR. They form a
Darboux chain if they satisfy the relation

Lj = AjA
+
j − αj = A+

j−1Aj−1 (1)

whereAj = − d
dx

+ fj(x) are first order differential operators. A Darboux
chain is calledperiodic if Lj+r = Lj for somer and for all j = 1, 2, . . . .
The numberr is called period of a Darboux chain. In the particular caser = 1
the operatorL1 + α

2
appears to be the harmonic oscillator and it is known that

it has a discrete spectrum consisting of the geometric sequenceλk =
2k + 1

2
α,

wherek = 1, 2 . . . . Eigenfunctions of the harmonic oscillator are expressed in
terms of the Hermite polynomials and therefore they form a complete family
in the Hilbert spaceL2(R).
Periodic Darboux chain leads to the following integrable system of differential
equations:

(fj + fj−1)′ = f 2
j − f 2

j−1 − αj , j = 1, 2, . . . (2)

where fj+r ≡ fj . Sometimes this system is referred to asdressing chain
which has been thoroughly examined in [8]. The casesα = 0 and α 6= 0,
where α =

∑r
j=1 αj , are cardinally different. The operators of a periodic
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