ON LOCALLY LAGRANGIAN SYMPLECTIC STRUCTURES

IZU VAISMAN

Department of Mathematics, University of Haifa 31905 Haifa, Israel

Abstract. Some results on global symplectic forms defined by local Lagrangians of a tangent manifold, studied earlier by the author, are summarized without proofs.

This is a summary of some of our results on locally Lagrange symplectic and Poisson manifolds [3,4].

The symplectic forms used in Lagrangian dynamics are defined on tangent bundles TN, and they are of the type

$$\omega_{\mathcal{L}} = \sum_{i,j=1}^{n} \left(\frac{\partial^2 \mathcal{L}}{\partial x^i \partial \xi^j} \, \mathrm{d}x^i \wedge \mathrm{d}x^j + \frac{\partial^2 \mathcal{L}}{\partial \xi^i \partial \xi^j} \, \mathrm{d}\xi^i \wedge \mathrm{d}x^j \right) \tag{1}$$

where $(x^i)_{i=1}^n$ $(n = \dim N)$ are local coordinates on N, (ξ^i) are the corresponding natural coordinates on the fibers of TN, and $\mathcal{L} \in C^{\infty}(TN)$ is a non degenerate Lagrangian.

An **almost tangent structure** on a differentiable manifold M^{2n} is a tensor field $S \in \Gamma \operatorname{End}(TM)$ (necessarily of rank n) such that

$$S^2 = 0, \qquad \text{Im}\,S = \text{Ker}\,S\,. \tag{2}$$

If the Nijenhuis tensor vanishes, i. e. $\forall X, Y \in \Gamma TM$,

$$\mathcal{N}_{S}(X,Y) = [SX,SY] - S[SX,Y] - S[X,SY] + S^{2}[X,Y] = 0, \quad (3)$$

S is a **tangent structure**. Then, V = Im S, is an integrable subbundle, and we call its tangent foliation the **vertical foliation** \mathcal{V} . Furthermore, M has local