Ninth International Conference on Geometry, Integrability and Quantization June 8–13, 2007, Varna, Bulgaria Ivaïlo M. Mladenov, Editor SOFTEX, Sofia 2008, pp 261–264



## ONE REMARK ON VARIATIONAL PROPERTIES OF GEODESICS IN PSEUDORIEMANNIAN AND GENERALIZED FINSLER SPACES

## JOSEF MIKEŠ<sup>†</sup>, IRENA HINTERLEITNER<sup>‡</sup> and ALENA VANŽUROVÁ<sup>†</sup>

<sup>†</sup>Department of Algebra and Geometry, Faculty of Science, Palacký University 779 00 Olomouc, Czech Republic

<sup>‡</sup>Faculty of Mechanical Engineering, Brno University of Technology 616 69 Brno, Czech Republic

**Abstract.** A new variational property of geodesics in (pseudo-)Riemannian and Finsler spaces has been found.

## 1. Introduction

Let us assume an *n*-dimensional **Finsler space**  $F_n$  with local coordinates  $x \equiv (x^1, \ldots, x^n)$  on the underlying manifold  $M_n$ , and a (positive definite) metric form with local expression

$$\mathrm{d}s^2 = g_{ij}(x, \dot{x})\mathrm{d}x^i\mathrm{d}x^j\,.\tag{1}$$

Here  $g_{ij}(x^1, \ldots, x^n, \dot{x}^1, \ldots, \dot{x}^n)$  are components of the metric tensor, and  $(x, \dot{x})$  denote adapted local coordinates on the tangent bundle TM, i.e.,  $(\dot{x}^1, \ldots, \dot{x}^n)$  are coordinates of the "tangent vector"  $\dot{x}$  at x. Metric depends on "positions" and "velocities" in general.

In the Finsler space  $F_n$  there exists a (fundamental) function  $F(x, \dot{x})$  which is homogeneous of the second degree in  $\dot{x}^i$  and satisfies

$$g_{ij}(x,\dot{x}) = \frac{\partial^2 F(x,\dot{x})}{\partial \dot{x}^i \partial \dot{x}^j} \, \cdot \,$$

Particularly, the equality

$$F(x, \dot{x}) = g_{ij}(x, \dot{x}) \mathrm{d}x^i \mathrm{d}x^j$$

holds [3]. As it is well known, in the particular case when components of the metric tensor depend only on position coordinates (i.e., are independent of "velocity coordinates"  $\dot{x}$ ) the Finsler space  $F_n$  turns out to be a **Riemannian space**  $V_n$ .