ON THE KAUP-KUPERSHMIDT EQUATION. COMPLETENESS RELATIONS FOR THE SQUARED SOLUTIONS

TIHOMIR VALCHEV

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria

Abstract

We regard a cubic spectral problem associated with the KaupKupershmidt equation. For this spectral problem we prove a completeness of its "squared" solutions and derive the completeness relations which they satisfy. The spectral problem under consideration can be naturally viewed as a \mathbb{Z}_{3}-reduced Zakharov-Shabat problem related to the algebra $\mathfrak{s l}(3, \mathbb{C})$. This observation is crucial for our considerations.

1. Introduction

The Kaup-Kupershmidt equation (KKE) is a $1+1$ nonlinear evolution equation given by

$$
\begin{equation*}
\partial_{t} f=\partial_{x^{5}}^{5} f+10 f \partial_{x^{3}}^{3} f+25 \partial_{x} f \partial_{x^{2}}^{2} f+20 f^{2} \partial_{x} f \tag{1}
\end{equation*}
$$

where $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and ∂_{x} stands for the partial derivative with respect to the variable x. It is S-integrable, i.e., it possesses a scalar Lax representation $\partial_{t} \mathcal{L}=$ $[\mathcal{L}, \mathcal{A}]$ with Lax operators of the form

$$
\begin{align*}
& \mathcal{L}=\partial_{x^{3}}^{3}+2 f \partial_{x}+\partial_{x} f \tag{2}\\
& \mathcal{A}=9 \partial_{x^{5}}^{5}+30 f \partial_{x^{3}}^{3}+45 \partial_{x} f \partial_{x^{2}}^{2}+\left(20 f^{2}+35 \partial_{x^{2}}^{2} f\right) \partial_{x}+10 \partial_{x^{3}}^{3} f+20 f \partial_{x} f \tag{3}
\end{align*}
$$

It proves to be convenient to work not with scalar but with one-order matrix Lax operators. That is why we factorize the scattering operator \mathcal{L} (see [4])

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{x}-u\right) \partial_{x}\left(\partial_{x}+u\right) \tag{4}
\end{equation*}
$$

where the new function $u(x, t)$ is interrelated with $f(x, t)$ via a Miura transformation as follows

$$
\begin{equation*}
f=\partial_{x} u-\frac{1}{2} u^{2} . \tag{5}
\end{equation*}
$$

